scholarly journals Performance Evaluation of Thermal Bridge Reduction Method for Balcony in Apartment Buildings

Buildings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 63
Author(s):  
Xinwen Zhang ◽  
Gun-Joo Jung ◽  
Kyu-Nam Rhee

Most apartment buildings in South Korea use internal insulation systems to reduce building energy demand. However, thermal bridges such as balcony slabs in apartment buildings still lead to significant heat loss in winter, because the internal insulation system is not continuous in the balcony slab structure, and floor heating systems are commonly used in residential buildings. Therefore, this study investigates two types of thermal break elements, namely thermal break (TB) and thermal break-fiber glass reinforced polymer (TB-GFRP), to improve the thermal resistance of a balcony thermal bridge. To understand the effects of balcony thermal bridges with and without thermal break elements, the linear thermal transmittances of different balcony thermal bridges were analyzed using Physibel simulations. Then, the heating demand of a model apartment under varying thermal bridge conditions was evaluated using TRNSYS simulations. To understand the effect of insulation systems on heat loss through a balcony thermal bridge, apartments with internal and external insulation systems were studied. Whether the apartment was heating was also considered in the thermal transmittance analysis. Thus, the linear thermal transmittance of the thermal bridges with thermal break elements was reduced by more than 60%, and the heating energy demands were reduced by more than 8%.

2021 ◽  
Vol 13 (17) ◽  
pp. 9491
Author(s):  
Manuel Carpio ◽  
David Carrasco

The increase in energy consumption that occurs in the residential sector implies a higher consumption of natural resources and, therefore, an increase in pollution and a degradation of the ecosystem. An optimal use of materials in the thermal envelope, together with efficient measures in the passive architectural design process, translate into lower energy demands in residential buildings. The objective of this study is to analyse and compare, through simulating different models, the impact of the shape factor on energy demand and CO2 emissions depending on the type of construction solution used in the envelope in a cold oceanic climate in South Chile. Five models with different geometries were considered based on their relationship between exposed surface and volume. Additionally, three construction solutions were chosen so that their thermal transmittance gradually complied with the values required by thermal regulations according to the climatic zone considered. Other parameters were equally established for all simulations so that their comparison was objective. Ninety case studies were obtained. Research has shown that an appropriate design, considering a shape factor suitable below 0.767 for the type of cold oceanic climate, implies a decrease in energy demand, which increased when considering architectural designs in the envelope with high values of thermal resistance.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2222 ◽  
Author(s):  
David Bienvenido-Huertas ◽  
Juan Antonio Fernández Quiñones ◽  
Juan Moyano ◽  
Carlos E. Rodríguez-Jiménez

Nowadays, the building sector is one of the main sources emitting pollutant gases to the atmosphere due to its deficient energy behaviour. Among the elements of the envelope, the thermal bridges are where the heat losses and gains mainly occur, depending on the season of the year. To reduce the effect of the thermal bridges, there are different patented technologies which give provide solutions. In this paper, the thermal behaviour of five patented slab front (slab-façade) thermal bridges are analysed in a case study located in the south of Spain. Moreover, the influence of the thermal bridge on the energy demand from the building analysed was evaluated, both in the current scenario and future ones (2020, 2050 and 2080). The results reveal that the use of the patents in slab fronts can mean reductions by up to 95.74% in the linear thermal transmittance. Likewise, due to the improvement of the thermal bridge of slab fronts by using the patented designs which offered the best features, a savings in the global energy demand for heating higher than 18% as well as a savings in the global energy demand for cooling higher than 2.80% could be achieved in all the time scenarios considered.


2020 ◽  
Vol 172 ◽  
pp. 08005
Author(s):  
Jaanus Hallik ◽  
Targo Kalamees

A well-insulated, airtight and thermal bridge free building envelope is a key factor for nearly zero energy buildings (nZEB). However, increased insulation thickness and minimized air leakages increase the effect of thermal bridges on overall energy efficiency of the nZEBs. Although several more prominent linear thermal bridges are accounted for in the practice the three-dimensional heat flow through vast array of fixation elements, mounting brackets and other point thermal bridges are usually neglected due to time-consuming model preparation routine, lack of input data as well as high number of different thermal bridges that have to be assessed for a single project. In this study a new method was proposed for predicting three-dimensional heat flow and the point thermal transmittance of thermal bridges caused by full or partial penetration of the building envelope with metal elements with uniform geometry in third dimension based on multiple two-dimensional numerical heat flow calculations. A new parameter (equivalent length of thermal bridge) was defined which incorporates the effect of additional thermal transmittance in third dimension when multiplied by the difference of two thermal coupling coefficients derived for two-dimensional cross section. Multiple linear regression model was fitted on database with 102 cases and verified with separate case of window to wall connection incorporating metal penetration at fixation points. The proposed methodology can be useful in general practice where the design team lacks the skills or software tools for conducting detailed numerical analysis in three dimensions.


2019 ◽  
Vol 112 ◽  
pp. 01016 ◽  
Author(s):  
Martin Ivanov

The “thermal bridges” are defined as an isolated building’s areas, where the construction elements have higher thermal conductivity, compared with the rest of the building envelope. Thus, at cold winter conditions, a significant temperature difference may occur between neighbouring solid and air volumes within the construction. Moreover, it has been documented, that the heating energy demand of a building may be increased with more than 30%, due to the existence of thermal bridges and the increased heat losses from the indoors. Consequently, in the recent years, norms and standards have been developed, for avoiding thermal bridges during the building design process. But still, thermal bridges exist in the indoor environment, especially in older buildings, where no energy efficient measures have been applied. That is why, the presented study focuses on instantaneous field measurements of thermal bridge parameters in real existing ground floor residential room. The thermal bridge propagation is analysed relative to the indoor and outdoor air temperature and relative humidity, as well as with infrared thermal images of the affected external walls. The achieved results give valuable information about the generic conditions for thermal bridge existence, without considering the building envelope properties.


2013 ◽  
Vol 649 ◽  
pp. 163-166 ◽  
Author(s):  
Anna Rybakova ◽  
Miloš Kalousek

The balcony is one of the main reasons of the increased heat loss. If the balcony construction is performed of a metal back slab it would be hardly possible to avoid the formation of a powerful thermal bridge that will go along the whole balcony length. This problem could be solved by the thermal isolation of the wall which is the balcony support or by carrying out an integral thermal isolation of both the wall and the balcony. In the article the estimation and comparison of the six possible variants of the construction thermal isolation has been carried out. With the help of the two-dimensional thermal field the linear thermal transmittance and the temperature in distinguished points have been found.


Author(s):  
Ammar Alkhalidi ◽  
Suhil Kiwan ◽  
Haya Hamasha

Depletion of fossil fuel and the environmental effect associated with the use of it have made the topic of “thermal insulation regulations” a major concern in country Jordan and worldwide. This paper reviews the overall heat transfer coefficient U-value in Jordanian code for the building envelope, which represents how much the building envelope transfer heat to the outside environment. U-value was reviewed with respect to the following factors, heating degree days, the heating load required to achieve thermal comfort. Based on the review a new U-value of 0.65 W/m2.K was proposed and it was found that this value reduces the energy demand almost 50%. Moreover, the thermal bridge effect was investigated and it was found that an obvious increase in the U-value is present when having thermal bridges; this will affect the energy demand, almost 200%.


2020 ◽  
Vol 24 (3 Part B) ◽  
pp. 2181-2188 ◽  
Author(s):  
Jolanta Sadauskiene ◽  
Juozas Ramanauskas ◽  
Algimantas Vasylius

During the design of energy-efficient buildings with a ventilated fa?ade systems, the evaluation of point thermal transmittance is complicated. It requires additional theoretical knowledge, special software and skills to use it. Because of that, point thermal transmittance is often ignored in practice. The dependence of point thermal transmittance, which is appearing because of aluminum fixing elements used in the insulated wall with ventilated fa?ade system, from the thermal and geometrical properties of construction layers are analyzed in this paper. Research has shown, that thermal properties of the supporting wall, where fixing element is located, had the biggest influence on the point thermal transmittance. When thermal conductivity of the supporting wall was increasing, as well as a thickness of the insulation layer, a value of thermal bridge was increasing in a non-linear way. For this reason, the thermal transmittance coefficient of all construction could increase up to 35%. When the thickness of the supporting wall and thermal conductivity of the insulation layer was increased, the value of point thermal bridge was decreasing. The tests revealed strong dependency of the point thermal bridge on the thermal conductivity of bearing layer material and the thickness of the bearing layer of wall. For this reason, thermal bridges should receive greater consideration. It is not enough to use the diagrams of typical fasteners that very often do not take into account the exact thickness and thermal characteristics of materials


2016 ◽  
Vol 23 (1) ◽  
pp. 96-104 ◽  
Author(s):  
Simo ILOMETS ◽  
Kalle KUUSK ◽  
Leena PAAP ◽  
Endrik ARUMÄGI ◽  
Targo KALAMEES

Renovation of old apartment buildings is a topic of current research interest throughout the Eastern Europe region where similar typology is derived from the period of 1960–1990. Thermal bridges, essential components of the transmission heat loss of a building, have to be properly evaluated in the energy audit during current state-of-the-art situation as well as in the comparison of renovation solutions. Resulting from field measurements and calculations, we propose linear thermal transmittances Ψ of thermal bridges for four types of apartment buildings: prefabricated concrete large panel element, brick, wood (log), and autoclaved aerated concrete. Our results show that thermal bridges contribute 23% of the total transmission heat loss of a building envelope before renovation. After renovation thermal bridges ac­count for only 10% if windows are repositioned into additional external thermal insulation and balconies are rebuilt as best practice. Inversely, impact of the thermal bridges might be up to 34%, depending on the wall insulation thickness. We have also found that the relative percentage of thermal bridges after renovation increases and the negative impact of the thermal bridges of certain junctions cannot be compensated with thicker wall insulation. Results obtained in this paper are useful for energy audits.


2021 ◽  
Author(s):  
◽  
Dekhani Juvenalis Dukakis Nsaliwa

<p>In most developed economies, buildings are directly and indirectly accountable for at least 40% of the final energy use. Consequently, most world cities are increasingly surpassing sensitive environmental boundaries and continue to reach critical biophysical thresholds. Climate change is one of the biggest threats humanity faces today and there is an urgent need to reduce energy use and CO₂ emissions globally to zero or to less than zero, to address climate change. This often leads to the assumption that buildings must reduce energy demand and emit radically less CO₂ during construction and occupation periods. Certainly, this is often implemented through delivering ‘zero energy buildings’. The deployment of residential buildings which meet the zero energy criteria thereby allowing neighbourhoods and cities to convert to semi-autonomous energy systems is seen to have a promising potential for reducing and even eliminating energy demand and the associated greenhouse gas emissions. However, most current zero energy building approaches focus solely on operational energy overlooking other energy uses such as embodied energy and user transport energy. Embodied energy constitutes all energy requirements for manufacturing building materials, construction and replacement. Transport energy comprises the amount of energy required to provide mobility services to building users.  Zero energy building design decisions based on partial evaluation and quantification approaches might result in an increased energy demand at different or multiple scales of the built environment. Indeed, recent studies have demonstrated that embodied and transport energy demands account for more than half of the total annual energy demand of residential buildings built based on zero energy criteria. Current zero energy building frameworks, tools and policies therefore may overlook more than ~80% of the total net energy balance annually.  The original contribution of this thesis is an integrated multi-scale zero energy building framework which has the capacity to gauge the relative effectiveness towards the deployment of zero energy residential buildings and neighbourhoods. This framework takes into account energy requirements and CO₂ emissions at the building scale, i.e. the embodied energy and operation energy demands, and at the city scale, i.e. the embodied energy of related transport modes including infrastructure and the transport operational energy demand of its users. This framework is implemented through the development of a quantification methodology which allows the analysis and evaluation of energy demand and CO₂ emissions pertaining to the deployment of zero energy residential buildings and districts. A case study, located in Auckland, New Zealand is used to verify, validate and investigate the potential of the developed framework.  Results confirm that each of the building (embodied and operational) and transport (embodied and operational) energy requirements represent a very significant share of the annual overall energy demand and associated CO₂ emissions of zero energy buildings. Consequently, rather than the respect of achieving a net zero energy building balance at the building scale, the research has revealed that it is more important, above all, to minimise building user-related and transportation energy demand at the city scale and maximise renewable energy production coupled with efficiency improvements at grid level. The application of the developed evaluation framework will enable building designers, urban planners, researchers and policy makers to deliver effective multi-scale zero energy building strategies which will ultimately contribute to reducing the overall environmental impact of the built environment today.</p>


2013 ◽  
Vol 689 ◽  
pp. 269-272 ◽  
Author(s):  
Yu Min Kim ◽  
Yong Jun Lee ◽  
Gyeong Seok Choi ◽  
Jae Sik Kang

Highly insulated envelope or external insulation systems are being applied in recent energy saving buildings to reduce the heat loss through envelope. Internal insulation systems are applied to most apartments in Korea because they are inexpensive and convenient to construct. However, the internal insulation systems have poor performance due to the heat bridges through structures such as slabs. The external insulation systems have better thermal performance because the heat bridges through the structure are rarely formed. But it has problems regarding the external insulator separation due to strong winds, spread of fire due to insulator combustion in case of fire, formation of heat bridges through the connectors between structure and external insulation. To supplement the weaknesses of the internal and the external insulation systems, a sandwich insulation system has been suggested. In this study, the thermal performance of sandwich insulation system for apartment buildings was evaluated according to two type of the form-tie material.


Sign in / Sign up

Export Citation Format

Share Document