scholarly journals Impact of Shape Factor on Energy Demand, CO2 Emissions and Energy Cost of Residential Buildings in Cold Oceanic Climates: Case Study of South Chile

2021 ◽  
Vol 13 (17) ◽  
pp. 9491
Author(s):  
Manuel Carpio ◽  
David Carrasco

The increase in energy consumption that occurs in the residential sector implies a higher consumption of natural resources and, therefore, an increase in pollution and a degradation of the ecosystem. An optimal use of materials in the thermal envelope, together with efficient measures in the passive architectural design process, translate into lower energy demands in residential buildings. The objective of this study is to analyse and compare, through simulating different models, the impact of the shape factor on energy demand and CO2 emissions depending on the type of construction solution used in the envelope in a cold oceanic climate in South Chile. Five models with different geometries were considered based on their relationship between exposed surface and volume. Additionally, three construction solutions were chosen so that their thermal transmittance gradually complied with the values required by thermal regulations according to the climatic zone considered. Other parameters were equally established for all simulations so that their comparison was objective. Ninety case studies were obtained. Research has shown that an appropriate design, considering a shape factor suitable below 0.767 for the type of cold oceanic climate, implies a decrease in energy demand, which increased when considering architectural designs in the envelope with high values of thermal resistance.

2020 ◽  
Vol 12 (18) ◽  
pp. 7507
Author(s):  
Carlo Iapige De Gaetani ◽  
Andrea Macchi ◽  
Pasquale Perri

The building sector plays a central role in addressing the problem of global energy consumption. Therefore, effective design measures need to be taken to ensure efficient usage and management of new structures. The challenging task for designers is to reduce energy demands while maintaining a high-quality indoor environment and low costs of construction and operations. This study proposes a methodological framework that enables decision-makers to resolve conflicts between energy demand and life cycle costs. A case study is analyzed to validate the proposed method, adopting different solutions for walls, roofs, floors, windows, window-to-wall ratios and geographical locations. Models are created on the basis of all the possible combinations between these elements, enriched by their thermal properties and construction/management costs. After the alternative models are defined, energy analyses are carried out for an estimation of consumption. By calculating the total cost of each model as the sum of construction, energy and maintenance costs, a joint analysis is carried out for variable life cycles. The obtained results from the proposed method confirm the importance of a preliminary assessment from both energy and cost points of view, and demonstrate the impact of considering different building life cycles on the choice of design alternatives.


2018 ◽  
Vol 13 (s1) ◽  
pp. 15-28
Author(s):  
Boukarta Soufiane ◽  
Berezowska-Azzag Ewa

AbstractHousing is rated as one of the most commonly consuming energy field in terms of energy end-use with 41%. Regarding the transformations dealt by dwellers for functional and social uses. The aim of this paper is: Firstly, to highlight the non-controlled transformation process made by the occupant in Algeria; Secondly, to explore the impact of the energy load of such spatial transformations. The question is approached in two tracks, (i) Through Ecotect software’s simulations (ii) and measurements through a collection of energy end-use data. Basically, the energy demand is bound to dwelling’s spatial and socioeconomic criteria. Three cases studied showed consequently 2 positive and 1 negative energy load, in which two explanations may be given: Insulation quality that occupant is lacking facilities to improve may be stated as a physical explanation, as well as for the socio economic one, the density per dwelling plays a major role, but it is the income which explains within the two approaches more than 87% of the energy end use.


Buildings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 63
Author(s):  
Xinwen Zhang ◽  
Gun-Joo Jung ◽  
Kyu-Nam Rhee

Most apartment buildings in South Korea use internal insulation systems to reduce building energy demand. However, thermal bridges such as balcony slabs in apartment buildings still lead to significant heat loss in winter, because the internal insulation system is not continuous in the balcony slab structure, and floor heating systems are commonly used in residential buildings. Therefore, this study investigates two types of thermal break elements, namely thermal break (TB) and thermal break-fiber glass reinforced polymer (TB-GFRP), to improve the thermal resistance of a balcony thermal bridge. To understand the effects of balcony thermal bridges with and without thermal break elements, the linear thermal transmittances of different balcony thermal bridges were analyzed using Physibel simulations. Then, the heating demand of a model apartment under varying thermal bridge conditions was evaluated using TRNSYS simulations. To understand the effect of insulation systems on heat loss through a balcony thermal bridge, apartments with internal and external insulation systems were studied. Whether the apartment was heating was also considered in the thermal transmittance analysis. Thus, the linear thermal transmittance of the thermal bridges with thermal break elements was reduced by more than 60%, and the heating energy demands were reduced by more than 8%.


Procedia CIRP ◽  
2016 ◽  
Vol 48 ◽  
pp. 194-199 ◽  
Author(s):  
Paolo C. Priarone ◽  
Giuseppe Ingarao ◽  
Luca Settineri ◽  
Rosa Di Lorenzo

2021 ◽  
Vol 11 (1) ◽  
pp. 08-19
Author(s):  
Maureen de Gastines ◽  
◽  
Andrea Pattini

Glazing is one of the dominant features of modern and contemporary architecture. This envelope design may have a great impact on operational energy demand of buildings. In this work, glazed façade systems available in Argentina are analyzed, with the purpose of determining the associated thermal transmittance ranges, in terms of the profiles’ design, the type of glazing and the size of glass panes. First, by using bidimensional numerical calculation, the impact of several profile design parameters on thermal transmittance is studied, highlighting the relevance of glazing fixing methods, to then calculate the thermal transmittance of the entire facade. The results indicate that the thermal transmittance value of glazed facades, mainly depends on the transmittance of the glass used, and exceeds this by 24% on average.


2021 ◽  
Author(s):  
B. Manav ◽  
E. Kaymaz

In the last years, as a result of environmental concerns, changes in lifestyle during the COVID-19 crisis, the role of healthy buildings in addition to the main lighting design principles are highlighted. Therefore, today’s lighting design issues include social well-being, mental well-being, and physical well-being more than we discussed in the last century. Hence, we are familiar with occupant-centric and performance-based metrics for residential and non-domestic buildings. The study analyses the extended occupancy patterns, daylight availability, and annual lighting energy demand through a case study in Bursa, Turkey including the COVID-19 pandemic scenario.


2019 ◽  
Vol 63 (5) ◽  
pp. 709-731
Author(s):  
Wallace Manzano ◽  
Valdemar Vicente Graciano Neto ◽  
Elisa Yumi Nakagawa

Abstract Systems-of-Systems (SoS) combine heterogeneous, independent systems to offer complex functionalities for highly dynamic smart applications. Besides their dynamic architecture with continuous changes at runtime, SoS should be reliable and work without interrupting their operation and with no failures that could cause accidents or losses. SoS architectural design should facilitate the prediction of the impact of architectural changes and potential failures due to SoS behavior. However, existing approaches do not support such evaluation. Hence, these systems have been usually built without a proper evaluation of their architecture. This article presents Dynamic-SoS, an approach to predict/anticipate at design time the SoS architectural behavior at runtime to evaluate whether the SoS can sustain their operation. The main contributions of this approach comprise: (i) characterization of the dynamic architecture changes via a set of well-defined operators; (ii) a strategy to automatically include a reconfiguration controller for SoS simulation; and (iii) a means to evaluate architectural configurations that an SoS could assume at runtime, assessing their impact on the viability of the SoS operation. Results of our case study reveal Dynamic-SoS is a promising approach that could contribute to the quality of SoS by enabling prior assessment of its dynamic architecture.


Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 525 ◽  
Author(s):  
Edwin R. Grijalva ◽  
José María López Martínez

The emissions of CO2 gas caused by transport in urban areas are increasingly serious, and the public transport sector plays a vital role in society, especially when considering the increased demands for mobility. New energy technologies in urban mobility are being introduced, as evidenced by the electric vehicle. We evaluated the positive environmental effects in terms of CO2 emissions that would be produced by the replacement of conventional urban transport bus fleets by electric buses. The simulation of an electric urban bus conceptual model is presented as a case study. The model is validated using the speed and height profiles of the most representative route within the city of Madrid—the C1 line. We assumed that the vehicle fleet is charged using the electric grid at night, when energy demand is low, the cost of energy is low, and energy is produced with a large provision of renewable energy, principally wind power. For the results, we considered the percentage of fleet replacement and the Spanish electricity mix. The analysis shows that by gradually replacing the current fleet of buses by electric buses over 10 years (2020 to 2030), CO2 emissions would be reduced by up to 92.6% compared to 2018 levels.


2014 ◽  
Vol 933 ◽  
pp. 329-334
Author(s):  
Ying Ming Su ◽  
Hsin Yao Huang

Architectural typology and configurations on the urban wind environment are closely related, this research took the large-scaled high-density development in Taiwan of Fujhou Affordable Housing as a case study, the use of computer simulation Ecotect Analysis, for collection of air distribution to explore central courtyard buildings wind environment flow in the urban environment for congregate housing. This study according to simulation results tried to adjust the configuration program for a further amendment to meet pedestrians comfort. Results proved that the use of computer simulation for design review, could effectively achieve the most optimized design while also to reduce energy conservation and improve comfort, which will further as references for future architectural design and master planning.


Sign in / Sign up

Export Citation Format

Share Document