scholarly journals Framework for the Detection, Diagnosis, and Evaluation of Thermal Bridges Using Infrared Thermography and Unmanned Aerial Vehicles

Buildings ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 179 ◽  
Author(s):  
Ficapal ◽  
Mutis

The glass curtain wall system is an architectural, functional innovation where failures of insulation systems create areas of reduced resistance to heat transfer—thermal bridges—during a building’s operational lifetime. These failures enable energy flows that trigger unanticipated temperature changes and increased energy consumption, ultimately damaging the façade structure and directly impacting occupants. Our study aims to design and test an innovative method for rapidly identifying thermal bridges in façade systems, with minimum or no occupant disturbance. The research focus is in the classification of damage as either a local failure or as being related to a poor systematic construction/assembly. A nontraditional approach is adopted to survey an entire fully operational building using infrared thermography and an unmanned aerial vehicle (UAV) using a noncontact infrared camera mounted on and operated from the UAV. The system records the emissivity of the façade materials and calculates the thermal radiation to estimate localized temperatures. The system records thermal radiation readings which are analyzed using graphs to be compared with the American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE) standards, under ideal conditions using the THERM software. The results enable discussion relating to the most common failure areas for existing structures, facilitating the identification of focus areas for the improvement of construction methods through improved processes.

Author(s):  
Kennethrex O. Ndukaife ◽  
George Agbai Nnanna

An Infrared thermography (IRT) technique for characterization of fouling on membrane surface has been developed. The emitted spectral power from the fouled membrane is a function of emissivity and surface morphology. In this work, a FLIR A320 IR camera was used to measure surface temperature and emissivity. The surface temperature and the corresponding emissivity value of various areas on the fouled membrane surface is measured by the infrared camera and recorded alongside its thermogram. Different fouling experiments were performed using different concentrations of aluminum oxide nanoparticle mixed with deionized water as feed solution (333 ppm, 1833 ppm and 3333 ppm) so as to investigate the effect of feed concentration on the degree of fouling and thus its effect on the emissivity values measured on the membrane surfaces. Surface plots in 3D and Line plots are obtained for the measured emissivity values and thickness of the fouling deposit on the membrane surface respectively. The results indicate that the IRT technique is sensitive to changes that occur on the membrane surface due to deposition of contaminants on the membrane surface and that emissivity is a function of temperature, surface roughness and thickness of the specimen under investigation.


2021 ◽  
Vol 63 (9) ◽  
pp. 529-533
Author(s):  
Jiali Zhang ◽  
Yupeng Tian ◽  
LiPing Ren ◽  
Jiaheng Cheng ◽  
JinChen Shi

Reflection in images is common and the removal of complex noise such as image reflection is still being explored. The problem is difficult and ill-posed, not only because there is no mixing function but also because there are no constraints in the output space (the processed image). When it comes to detecting defects on metal surfaces using infrared thermography, reflection from smooth metal surfaces can easily affect the final detection results. Therefore, it is essential to remove the reflection interference in infrared images. With the continuous application and expansion of neural networks in the field of image processing, researchers have tried to apply neural networks to remove image reflection. However, they have mainly focused on reflection interference removal in visible images and it is believed that no researchers have applied neural networks to remove reflection interference in infrared images. In this paper, the authors introduce the concept of a conditional generative adversarial network (cGAN) and propose an end-to-end trained network based on this with two types of loss: perceptual loss and adversarial loss. A self-built infrared reflection image dataset from an infrared camera is used. The experimental results demonstrate the effectiveness of this GAN for removing infrared image reflection.


2016 ◽  
Vol 869 ◽  
pp. 411-415
Author(s):  
Dimitry V. Bubnoff ◽  
Mariana M.O. Carvalho ◽  
Carlos Roberto Xavier ◽  
Gláucio S. da Fonseca ◽  
José Adilson de Castro

In the present work, the martensite formation during heat treatment of 1026 steel was studied in order to acquire process knowledge and reinforce the effectiveness of infrared thermography method to evaluate the temperature distributions. Several tests were carried out and monitored by an infrared camera and thermocouples. Martensite fraction was evaluated with the aid of the Koistinen-Marburger model and adequate parameters describing phase transformations were obtained for 1026 steel samples. This research revealed the need of model adjustment in order to accurately describe the martensite transformation kinetics according to experimental results.


Proceedings ◽  
2019 ◽  
Vol 27 (1) ◽  
pp. 49 ◽  
Author(s):  
Gunther Steenackers ◽  
Ben Cloostermans ◽  
Filip Thiessen ◽  
Yarince Dirkx ◽  
Jan Verstockt ◽  
...  

Dynamic infrared thermography (DIRT) has been used to locate perforating vessels and to assist in reconstructive breast surgery. Qualitative information on the perforating vessels is obtained by analysing the rate and pattern of rewarming of hot spots which are easily registered with an infrared camera. Thermal measurements are made before and during surgery and are compared with the CT-images available before operation. The thermal images can provide the individual influence of each perforator on the flap, as well as the dimensions of the perfused area. We will investigate if the influence of the different dominant perforators can be assessed by dynamic infrared thermography as a useful tool for recostructive DIEP-flap surgery.


2013 ◽  
Vol 405-408 ◽  
pp. 1330-1333 ◽  
Author(s):  
Chuan Yi Sui ◽  
Xu Dong Zhou ◽  
Lin Hui Wang

Problems often exist in construction of transportation tunnels, such as the effect of new tunnels constructed close to existing structures. Solving this magnificent problem by carefully choosing tunnel construction methods will be beneficial to minimize effects on existing structures while ensuring the newly constructed tunnel is both time-consuming and economical. Three representative engineering methods-the benching tunneling method, the Center Diaphragm method and the Cross Diaphragm method-are compared in controlling the settlement of new tunnel vault and the deformation of the existing tunnel. Finally checking the simulation results by comparing with field measurement data.


2020 ◽  
pp. 030936462095851
Author(s):  
Natali Olaya Mira ◽  
Carolina Viloria Barragán ◽  
Jesus Alberto Plata

Background: Mechanical behavior is difficult to monitor in experimental environments, usually because of geometric or technology implementation limitations. Nevertheless, thermography has been shown to overcome these issues. Objectives: The aim of this study was to evaluate four types of assemblies between a Jaipur foot and a polyethylene tube using infrared thermography in order to find the best mechanical configuration in terms of thermal behavior. Study Design: Mechanical testing. Technique: An infrared camera captured short videos every 5 min over 10 h in six different positions (three in the back and three in front of the Jaipur foot) around a prosthesis subjected to repetitive stresses (axial force 980 N) simulating kinematic variables like joint angles. We established a region of interest around the foot–ankle assemblies and calculated maximum temperatures and thermographic indices. Results: In this study, the best foot–ankle assembly used epoxy adhesive because it presented the lowest temperature in the six positions and the lowest thermal index. Conclusions: Thermographic techniques can be used to study mechanical behaviors in complex experimental situations.


Proceedings ◽  
2019 ◽  
Vol 27 (1) ◽  
pp. 3
Author(s):  
Tsai ◽  
Huang ◽  
Tai

Infrared thermography (IRT) has been widely employed to identify the defects illustrated in building facades. However, the IRT covered with a shadow is hard to be applied to determine the defects shown in the IRT. The study proposed an approach based on the multiplicated model to describe quantitively the shadow effects, and the IRT can be segmented into few classes according to the surface temperature information recorded on the IRT by employing a thermal infrared camera. The segmented results were compared with the non-destructive method (acoustic tracing) to verify the correctness and robustness of the approach. From the processed results, the proposed approach did correctly identify the defects illustrated in building facades through the IRTs were covered with shadow.


2015 ◽  
Vol 760 ◽  
pp. 627-632
Author(s):  
Razvan Gabriel Dragan ◽  
Ileana Constanta Rosca ◽  
Diana Cazangiu ◽  
Alexandru Stefan Leonte

This paper presents a non-destructive technique (NDT) using active infrared thermography and FEM analyses with Comsol Multiphysics software applied for thermal distribution detection through reinforced concrete. For this work a reinforced concrete slab was created having a parallelepiped shape, the length and the width of 400 mm and the thickness of 50 mm. The concrete slab was reinforced using a rebar mesh of 18 mm diameter. The experimental installation consisted of an electrical heating source and a steel frame for fixing the slab and for the thermal distribution analyses an infrared camera was used. The same type of material and conditions like in the laboratory was used for the FEM analyses in Comsol Multiphysiscs to compare with the experimental part. A concrete slab without steel was used to determine the difference between the simple concrete and reinforced concrete in the heat transfer process.


2016 ◽  
Vol 127 ◽  
pp. 138-158 ◽  
Author(s):  
Jin-Hee Song ◽  
Jae-Han Lim ◽  
Seung-Yeong Song
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document