Characterization of Fouled Flat Sheet Membranes by Infrared Thermography

Author(s):  
Kennethrex O. Ndukaife ◽  
George Agbai Nnanna

An Infrared thermography (IRT) technique for characterization of fouling on membrane surface has been developed. The emitted spectral power from the fouled membrane is a function of emissivity and surface morphology. In this work, a FLIR A320 IR camera was used to measure surface temperature and emissivity. The surface temperature and the corresponding emissivity value of various areas on the fouled membrane surface is measured by the infrared camera and recorded alongside its thermogram. Different fouling experiments were performed using different concentrations of aluminum oxide nanoparticle mixed with deionized water as feed solution (333 ppm, 1833 ppm and 3333 ppm) so as to investigate the effect of feed concentration on the degree of fouling and thus its effect on the emissivity values measured on the membrane surfaces. Surface plots in 3D and Line plots are obtained for the measured emissivity values and thickness of the fouling deposit on the membrane surface respectively. The results indicate that the IRT technique is sensitive to changes that occur on the membrane surface due to deposition of contaminants on the membrane surface and that emissivity is a function of temperature, surface roughness and thickness of the specimen under investigation.

Proceedings ◽  
2019 ◽  
Vol 27 (1) ◽  
pp. 3
Author(s):  
Tsai ◽  
Huang ◽  
Tai

Infrared thermography (IRT) has been widely employed to identify the defects illustrated in building facades. However, the IRT covered with a shadow is hard to be applied to determine the defects shown in the IRT. The study proposed an approach based on the multiplicated model to describe quantitively the shadow effects, and the IRT can be segmented into few classes according to the surface temperature information recorded on the IRT by employing a thermal infrared camera. The segmented results were compared with the non-destructive method (acoustic tracing) to verify the correctness and robustness of the approach. From the processed results, the proposed approach did correctly identify the defects illustrated in building facades through the IRTs were covered with shadow.


2011 ◽  
Vol 311-313 ◽  
pp. 127-130 ◽  
Author(s):  
Cui Qin Wu ◽  
Wei Ping Wang ◽  
Qi Gang Yuan ◽  
Yan Jun Li ◽  
Wei Zhang ◽  
...  

To estimate the disbond defects of the carbon fiber composite materials with honeycomb sandwich structure applied in the aerospace, active infrared thermographic NDT (non-destructive testing) is researched. The specimen with known disbond defects is detected by an active infrared thermography system. The specimen is stimulated by a pulse heating source. Based on the thermal wave propagation theory, the surface temperature of the specimen contained defects will differ from the surrounding sound area because of their different thermal-physical properties. The surface temperature is monitored using infrared camera and analyzed by a computer in the time domain. The experiment results show that the active infrared thermographic NDT is rapid, effective and intuitive for detecting the disbond defects in composite materials with honeycomb sandwich structure.


2021 ◽  
Author(s):  
Kyu Min Lee ◽  
Farhad Ein-Mozaffari

Ultrafiltration is one of the most promising membrane technologies for liquid purification due to its high economic efficiency in the industries. However, it has been faced with a critical problem, called fouling. The contaminants in feed solution tend to accumulate on the membrane surface, hindering permeate solution to pass through the porous spaces. Among the various solutions, application of ultrasound has been considered as the most popular method since it does not suffer a disadvantage of downtime and the filtration process does not need to be stopped for the removal of foulants. In this study, control of ceramic membrane fouling by an on-line intermittent ultrasound system was being investigated. The experiment focused on obtaining optimal operating ultrasonic condition. Frequency (20, 28, and 40 kHz), power intensity (1.44, 2.88, and 5.76W/cm2 ), and time interval of intermittent ultrasound (1, 1.5, and 2 minutes) were the parameters of interest. The effect of feed concentration was also analyzed at optimal ultrasonic condition. The quality and flow rate of the permeate streams were monitored for the evaluation of the process performance. The optimal condition of intermittent ultrasound was found at the frequency of 28 kHz and the power intensity of 2.88 W/cm2 ; and then, the application of intermittent ultrasound with short time interval successfully reduced the operating cost of ultrafiltration process while maintaining acceptable quality and flow rate of permeate solution. There was increase in efficiency of intermittent ultrasound at lower feed concentration.


Author(s):  
Gang Ju ◽  
Kenneth Reifsnider

The current interest in power generation industry with more efficient and clean, and more environmentally friendly ways has attracted the research and development in solid oxide fuel cell (SOFC). In SOFC, the chemical energy is converted into electric energy and heat as the by-product. In order to make a thermally self-sustained fuel cell stack, the understanding and management of the heat generation and electric power is a critical issue. Infrared thermography provides a non-destructive way to measure surface temperature. It was used to measure the instantaneous cathode surface temperature response to the current in an operating electrolyte supported planar solid oxide fuel cell (LSCF-6ScSZ-NiO). A numerical model was built to study the coupled electric current and temperature relation by incorporating the temperature dependent material properties, i.e. ohmic resistance and activation resistance, as global functions in the model. The thermal and electric fields were solved simultaneously. The measured and the predicted results agree to each other reasonably well. The cathode polarization overpotential tends to increase with the current at low current densities, but the simulated polarization-current curve exhibited a decreased slope under higher current densities that is ascribed to the local temperature increases due to the high current energy losses.


2021 ◽  
Author(s):  
Kyu Min Lee ◽  
Farhad Ein-Mozaffari

Ultrafiltration is one of the most promising membrane technologies for liquid purification due to its high economic efficiency in the industries. However, it has been faced with a critical problem, called fouling. The contaminants in feed solution tend to accumulate on the membrane surface, hindering permeate solution to pass through the porous spaces. Among the various solutions, application of ultrasound has been considered as the most popular method since it does not suffer a disadvantage of downtime and the filtration process does not need to be stopped for the removal of foulants. In this study, control of ceramic membrane fouling by an on-line intermittent ultrasound system was being investigated. The experiment focused on obtaining optimal operating ultrasonic condition. Frequency (20, 28, and 40 kHz), power intensity (1.44, 2.88, and 5.76W/cm2 ), and time interval of intermittent ultrasound (1, 1.5, and 2 minutes) were the parameters of interest. The effect of feed concentration was also analyzed at optimal ultrasonic condition. The quality and flow rate of the permeate streams were monitored for the evaluation of the process performance. The optimal condition of intermittent ultrasound was found at the frequency of 28 kHz and the power intensity of 2.88 W/cm2 ; and then, the application of intermittent ultrasound with short time interval successfully reduced the operating cost of ultrafiltration process while maintaining acceptable quality and flow rate of permeate solution. There was increase in efficiency of intermittent ultrasound at lower feed concentration.


Author(s):  
T. M. Weatherby ◽  
P.H. Lenz

Crustaceans, as well as other arthropods, are covered with sensory setae and hairs, including mechanoand chemosensory sensillae with a ciliary origin. Calanoid copepods are small planktonic crustaceans forming a major link in marine food webs. In conjunction with behavioral and physiological studies of the antennae of calanoids, we undertook the ultrastructural characterization of sensory setae on the antennae of Pleuromamma xiphias.Distal mechanoreceptive setae exhibit exceptional behavioral and physiological performance characteristics: high sensitivity (<10 nm displacements), fast reaction times (<1 msec latency) and phase locking to high frequencies (1-2 kHz). Unusual structural features of the mechanoreceptors are likely to be related to their physiological sensitivity. These features include a large number (up to 3000) of microtubules in each sensory cell dendrite, arising from or anchored to electron dense rods associated with the ciliary basal body microtubule doublets. The microtubules are arranged in a regular array, with bridges between and within rows. These bundles of microtubules extend far into each mechanoreceptive seta and terminate in a staggered fashion along the dendritic membrane, contacting a large membrane surface area and providing a large potential site of mechanotransduction.


Author(s):  
Yongmei Liu ◽  
Rajen Dias

Abstract Study presented here has shown that Infrared thermography has the potential to be a nondestructive analysis tool for evaluating package sublayer defects. Thermal imaging is achieved by applying pulsed external heating to the package surface and monitoring the surface thermal response as a function of time with a high-speed IR camera. Since the thermal response of the surface is affected by the defects such as voids and delamination below the package surface, the technique can be used to assist package defects detection and analysis.


Sign in / Sign up

Export Citation Format

Share Document