scholarly journals NACC1, as a Target of MicroRNA-331-3p, Regulates Cell Proliferation in Urothelial Carcinoma Cells

Cancers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 347 ◽  
Author(s):  
Kohei Morita ◽  
Tomomi Fujii ◽  
Hiroe Itami ◽  
Tomoko Uchiyama ◽  
Tokiko Nakai ◽  
...  

The nucleus accumbens-associated protein 1 (NACC1) is a transcription factor constitutively expressed in the urothelium, where it regulates cell growth, senescence, autophagy, and epithelial-mesenchymal transition. microRNA (miRNA) constitutes a class of small non-coding RNAs which are involved in cell proliferation, differentiation, and progression of tumors. miRNAs and their target molecules are utilized for molecular diagnosis of urothelial carcinoma. NACC1 is one of several putative target molecules of miR-331-3p, and is associated with cell proliferation in cancers such as prostate and cervical cancer. Functional experiments involving miR-331-3p and its target molecule NACC1 were conducted using the urothelial carcinoma (UC) cell lines, T24, UMUC6, and KU7. Furthermore, quantitative reverse transcription polymerase chain reaction and immunostaining were performed to evaluate the expression of NACC1 in UC derived from transurethral resection of bladder tumor (TUR-Bt) specimens. The methane thiosulfonate (MTS) assay revealed that cell proliferation was significantly reduced after transient transfection of miR-331-3p precursor and/or NACC1 siRNA in UC cells. Cell senescence via cell cycle arrest at the G1 phase was induced by NACC1 inhibition. On the other hand, suppression of NACC1 induced cell migration and invasion abilities. Immunohistochemical analysis of TUR-Bt specimens revealed that over 70% of UC cells presented strongly positive results for NACC1. In contrast, normal urothelial cells were weakly positive for NACC1. It was also found that NACC1 expression was lower in invasive UC cells than in non-invasive UC cells. Loss of NACC1 induced vessel invasion in invasive UC tissues. The present results indicate that NACC1 regulated by miR-331-3p contributes to cell proliferation, and is involved in cell migration and invasion. This suggests that NACC1 can serve as a potential target molecule for the prediction and prognosis of UC, and can contribute to effective treatment strategies.

2021 ◽  
pp. 096032712110061
Author(s):  
D Cao ◽  
L Chu ◽  
Z Xu ◽  
J Gong ◽  
R Deng ◽  
...  

Background: Visfatin acts as an oncogenic factor in numerous tumors through a variety of cellular processes. Visfatin has been revealed to promote cell migration and invasion in gastric cancer (GC). Snai1 is a well-known regulator of EMT process in cancers. However, the relationship between visfatin and snai1 in GC remains unclear. The current study aimed to explore the role of visfatin in GC. Methods: The RT-qPCR and western blot analysis were used to measure RNA and protein levels, respectively. The cell migration and invasion were tested by Trans-well assays and western blot analysis. Results: Visfatin showed upregulation in GC cells. Additionally, Visfatin with increasing concentration facilitated epithelial-mesenchymal transition (EMT) process by increasing E-cadherin and reducing N-cadherin and Vimentin protein levels in GC cells. Moreover, endogenous overexpression and knockdown of visfatin promoted and inhibited migratory and invasive abilities of GC cells, respectively. Then, we found that snai1 protein level was positively regulated by visfatin in GC cells. In addition, visfatin activated the NF-κB signaling to modulate snai1 protein expression. Furthermore, the silencing of snai1 counteracted the promotive impact of visfatin on cell migration, invasion and EMT process in GC. Conclusion: Visfatin facilitates cell migration, invasion and EMT process by targeting snai1 via the NF-κB signaling, which provides a potential insight for the treatment of GC.


2018 ◽  
Vol 48 (5) ◽  
pp. 1928-1941 ◽  
Author(s):  
Chuan He ◽  
Zhigang Liu ◽  
Li Jin ◽  
Fang Zhang ◽  
Xinhao Peng ◽  
...  

Background/Aims: MicroRNA-142-3p (miR-142-3p) is dysregulated in many malignancies and may function as a tumor suppressor or oncogene in tumorigenesis and tumor development. However, few studies have investigated the clinical significance and biological function of miR-142-3p in hepatocellular carcinoma (HCC). Methods: The expression levels of taurine upregulated gene 1 (TUG1), miR-142-3p, and zinc finger E-box-binding homeobox 1 (ZEB1) were evaluated in HCC tissues and cell lines by quantitative real-time PCR. MTT and colony formation assays were used to detect cell proliferation ability, transwell assays were used to assess cell migration and invasion, and luciferase reporter assays were used to examine the interaction between the long noncoding RNA TUG1 and miR-142-3p. Tumor formation was evaluated through in vivo experiments. Results: miR-142-3p was significantly downregulated in HCC tissues, but TUG1 was upregulated in HCC tissues. Knockdown of TUG1 and upregulation of miR-142-3p inhibited cell proliferation, cell migration, cell invasion, and the epithelial-mesenchymal transition (EMT). miR-142-3p was found to be a prognostic factor of HCC, and the mechanism by which TUG1 upregulated ZEB1 was via direct binding to miR-142-3p. In vivo assays showed that TUG1 knockdown suppressed cell proliferation and the EMT in nude mice. Conclusion: The results of this study suggest that the TUG1/miR-142-3p/ ZEB1 axis contributes to the formation of malignant behaviors in HCC.


2015 ◽  
Vol 34 (2) ◽  
pp. 987-994 ◽  
Author(s):  
GONG CHENG ◽  
CHANGYING LIU ◽  
XIUJIANG SUN ◽  
LEI ZHANG ◽  
LIFANG LIU ◽  
...  

2011 ◽  
Vol 440 (1) ◽  
pp. 23-31 ◽  
Author(s):  
Xiqiang Liu ◽  
Cheng Wang ◽  
Zujian Chen ◽  
Yi Jin ◽  
Yun Wang ◽  
...  

Down-regulation of miR-138 (microRNA-138) has been frequently observed in various cancers, including HNSCC (head and neck squamous cell carcinoma). Our previous studies suggest that down-regulation of miR-138 is associated with mesenchymal-like cell morphology and enhanced cell migration and invasion. In the present study, we demonstrated that these miR-138-induced changes were accompanied by marked reduction in E-cad (E-cadherin) expression and enhanced Vim (vimentin) expression, characteristics of EMT (epithelial–mesenchymal transition). On the basis of a combined experimental and bioinformatics analysis, we identified a number of miR-138 target genes that are associated with EMT, including VIM, ZEB2 (zinc finger E-box-binding homeobox 2) and EZH2 (enhancer of zeste homologue 2). Direct targeting of miR-138 to specific sequences located in the mRNAs of the VIM, ZEB2 and EZH2 genes was confirmed using luciferase reporter gene assays. Our functional analyses (knock-in and knock-down) demonstrated that miR-138 regulates the EMT via three distinct pathways: (i) direct targeting of VIM mRNA and controlling the expression of VIM at a post-transcriptional level, (ii) targeting the transcriptional repressors (ZEB2) which in turn regulating the transcription activity of the E-cad gene, and (iii) targeting the epigenetic regulator EZH2 which in turn modulates its gene silencing effects on the downstream genes including E-cad. These results, together with our previously observed miR-138 effects on cell migration and invasion through targeting RhoC (Rho-related GTP-binding protein C) and ROCK2 (Rho-associated, coiled-coil-containing protein kinase 2) concurrently, suggest that miR-138 is a multi-functional molecular regulator and plays major roles in EMT and in HNSCC progression.


PLoS ONE ◽  
2013 ◽  
Vol 8 (9) ◽  
pp. e74923 ◽  
Author(s):  
Maria Gardberg ◽  
Katja Kaipio ◽  
Laura Lehtinen ◽  
Piia Mikkonen ◽  
Vanina D. Heuser ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document