scholarly journals In Vivo Cell Fusion between Mesenchymal Stroma/Stem-Like Cells and Breast Cancer Cells

Cancers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 185 ◽  
Author(s):  
Catharina Melzer ◽  
Juliane von der Ohe ◽  
Ralf Hass

Cellular communication within the tumor microenvironment enables important interactions between cancer cells and recruited adjacent populations including mesenchymal stroma/stem-like cells (MSC). These interactions were monitored in vivo following co-injection of GFP-labeled human MSC together with mcherry-labeled MDA-MB-231 breast cancer cells in NODscid mice. Within 14 days of tumor development the number of initially co-injected MSC had significantly declined and spontaneous formation of breast cancer/MSC hybrid cells was observed by the appearance of double fluorescing cells. This in vivo fusion displayed a rare event and occurred in less than 0.5% of the tumor cell population. Similar findings were observed in a parallel in vitro co-culture. Characterization of the new cell fusion products obtained after two consecutive flow cytometry cell sorting and single cell cloning revealed two populations, termed MDA-hyb3 and MDA-hyb4. The breast cancer fusion cells expressed both, GFP and mcherry and displayed more characteristics of the MDA-MB-231 cells than of the parental MSC. While little if any differences were determined in the proliferative capacity, a significant delay of MDA-hyb3 cells in tumor formation was observed when compared to the parental MDA-MB-231 cells. Moreover, MDA-hyb3 cells developed an altered pattern of distant organ metastases. These findings demonstrated dynamic tumor changes by in vivo and in vitro fusion with the development of new breast cancer hybrid cells carrying altered tumorigenic properties. Consequently, cancer cell fusion contributes to progressively increasing tumor heterogeneity which complicates a therapeutic regimen.

2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Laura Graciotti ◽  
Toru Hosoda ◽  
Marcello Rota ◽  
Giulia Borghetti ◽  
Sergio Signore ◽  
...  

The adult heart is resistant to cancer formation and the metastatic invasion of distant neoplasms. This biological advantage may be dictated by the molecular properties of myocytes that constitutes 90% of the myocardium. We raised the possibility that microRNAs (miRs) highly expressed in myocytes (myomirs) may translocate via gap junctions to neighboring cancer cells, preventing their growth or inhibiting their survival. First, we established whether overexpression of myomirs interferes with the proliferation and death of MCF7 human breast cancer cells. Infection of MCF7 with lentiviruses carrying miR-1, miR-133a and miR-499 (miR-MCF7) resulted in a 5-fold decrease in Ki67 labeling and a 20% increase in the fraction of cells arrested at G0/G1. In contrast, TdT-positive apoptotic cells averaged 0.5% and did not differ in miR-MCF7 and control cells. To mimic the in vivo condition, EGFP-labeled MCF7 were co-cultured with myocytes and, 4 days later, the expression of myomirs was measured in FACS-sorted MCF7. With respect to baseline, co-cultured MCF7 showed 100-fold, 16-fold, and 27-fold increase in the expression of miR-1, miR-133a and miR-499, respectively. Co-culture of myocytes and MCF7 led to the formation of gap junctions made of connexin 43 (Cx43) and connexin 45 (Cx45). Silencing of Cx43 and Cx45 decreased significantly the expression of myomirs in co-cultured MCF7. Importantly, proximity of MCF7 to myocytes reduced markedly the growth rate of the cancer cells. Subsequently, 1 x 106 MCF7 or miR-MCF7 were injected subcutaneously in NOD-scid mice. At 5 weeks, the tumors developed from miR-MCF7 were 70% smaller than those originated from control MCF7. Two doses of breast cancer cells were injected intramyocardially to establish their in situ tumorigenic effects. Tumor formation was found in all hearts that received 1 x 106 MCF7. Conversely, mice injected with 1 x 105 cells did not show macroscopic evidence of neoplastic lesions. The lack of tumor development in the latter case is consistent with the ability of the heart to prevent neoplasm development when cancer cell colonization is not massive. Our findings document that miR-1, miR-133a and miR-499 translocate from myocytes to cancer cells via gap junctions, inhibiting tumor growth in vitro and in vivo.


2021 ◽  
Author(s):  
Catharina Melzer ◽  
Juliane von der Ohe ◽  
Tianjiao Luo ◽  
Ralf Hass

Abstract Background: A variety of different tumors including breast cancer cells can closely interact with mesenchymal stroma/stem-like cells (MSC) in the tumor microenvironment eventually resulting in cell fusion and formation of new hybrid cancer cell populations displaying altered properties. Methods: Lentiviral-transduced MDA-MB-231 cherry breast cancer cells and MSC GFP were co-cultured and a resulting hybrid cancer cell population (MDA-MSC-hyb5) was isolated. Characterization was performed for marker expression and short tandem repeat (STR) fragment analysis compared to the parental cells. Moreover, in vivo tumor development and metastatic capacity of MDA-MSC-hyb5 was studied and unique properties were analyzed by RNA microarray expression analyses compared to other breast cancer hybrid populations. Potential chemotherapeutic sensitivity was carried out in tumor explant cultures of MDA-MSC-hyb5 cells. Results: Direct cellular interactions of MDA-MB-231 cherry breast cancer cells with human MSC GFP in a co-culture model resulted in spontaneous cell fusion by generation of MDA-MSC-hyb5 cherry GFP breast cancer hybrid cells. Proliferative capacity of MDA-MSC-hyb5 cells was about 1.8-fold enhanced when compared to the parental MDA-MB-231 cherry breast cancer cells. In contrast to a spontaneous MDA-MB-231 cherry -induced tumor development in vivo within 18.8 days MDA-MSC-hyb5 cells initially remained quiescent in a dormancy-like state. At distinct time points up to about a half year later after injection NODscid mice started to develop MDA-MSC-hyb5 cell-induced tumors. Following tumor initiation, formation of metastases in various different organs occurred rapidly within about 10.5 days. Changes in gene expression levels were evaluated by RNA-microarray analysis and revealed certain increase in dormancy-associated transcripts in MDA-MSC-hyb5. Chemotherapeutic responsiveness of MDA-MSC-hyb5 cells was partially enhanced as compared to MDA-MB-231 cells, however, some resistance e.g. for taxol was detectable in cancer hybrid cells. Moreover, drug response partially changed during tumor development of MDA-MSC-hyb5 cells suggesting unstable in vivo phenotypes of MDA-hyb5 cells with increased tumor heterogeneity. Conclusions: The spontaneous formation of cancer hybrid cell populations like MDA-MSC-hyb5 by cell fusion contributes to tumorigenic diversification by acquisition of new properties such as altered chemotherapeutic responsiveness. The unique tumor dormancy of MDA-MSC-hyb5 cells not observed in other breast cancer hybrid cells so far markedly increases tumor heterogeneity.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Girdhari Rijal ◽  
Chandra Bathula ◽  
Weimin Li

Preparation of three-dimensional (3D) porous scaffolds from synthetic polymers is a challenge to most laboratories conducting biomedical research. Here, we present a handy and cost-effective method to fabricate polymeric hydrogel and porous scaffolds using poly(lactic-co-glycolic) acid (PLGA) or polycaprolactone (PCL). Breast cancer cells grown on 3D polymeric scaffolds exhibited distinct survival, morphology, and proliferation compared to those on 2D polymeric surfaces. Mammary epithelial cells cultured on PLGA- or PCL-coated slides expressed extracellular matrix (ECM) proteins and their receptors. Estrogen receptor- (ER-) positive T47D breast cancer cells are less sensitive to 4-hydroxytamoxifen (4-HT) treatment when cultured on the 3D porous scaffolds than in 2D cultures. Finally, cancer cell-laden polymeric scaffolds support consistent tumor formation in animals and biomarker expression as seen in human native tumors. Our data suggest that the porous synthetic polymer scaffolds satisfy the basic requirements for 3D tissue cultures both in vitro and in vivo. The scaffolding technology has appealing potentials to be applied in anticancer drug screening for a better control of the progression of human cancers.


2021 ◽  
pp. 1-10
Author(s):  
Yu Wang ◽  
Han Zhao ◽  
Ping Zhao ◽  
Xingang Wang

BACKGROUND: Pyruvate kinase M2 (PKM2) was overexpressed in many cancers, and high PKM2 expression was related with poor prognosis and chemoresistance. OBJECTIVE: We investigated the expression of PKM2 in breast cancer and analyzed the relation of PKM2 expression with chemotherapy resistance to the neoadjuvant chemotherapy (NAC). We also investigated whether PKM2 could reverse chemoresistance in breast cancer cells in vitro and in vivo. METHODS: Immunohistochemistry (IHC) was performed in 130 surgical resected breast cancer tissues. 78 core needle biopsies were collected from breast cancer patients before neoadjuvant chemotherapy. The relation of PKM2 expression and multi-drug resistance to NAC was compared. The effect of PKM2 silencing or overexpression on Doxorubicin (DOX) sensitivity in the MCF-7 cells in vitro and in vivo was compared. RESULTS: PKM2 was intensively expressed in breast cancer tissues compared to adjacent normal tissues. In addition, high expression of PKM2 was associated with poor prognosis in breast cancer patients. The NAC patients with high PKM2 expression had short survival. PKM2 was an independent prognostic predictor for surgical resected breast cancer and NAC patients. High PKM2 expression was correlated with neoadjuvant treatment resistance. High PKM2 expression significantly distinguished chemoresistant patients from chemosensitive patients. In vitro and in vivo knockdown of PKM2 expression decreases the resistance to DOX in breast cancer cells in vitro and tumors in vivo. CONCLUSION: PKM2 expression was associated with chemoresistance of breast cancers, and could be used to predict the chemosensitivity. Furthermore, targeting PKM2 could reverse chemoresistance, which provides an effective treatment methods for patients with breast cancer.


2021 ◽  
Vol 20 ◽  
pp. 153303382110278
Author(s):  
Yayan Yang ◽  
Qian Feng ◽  
Chuanfeng Ding ◽  
Wei Kang ◽  
Xiufeng Xiao ◽  
...  

Although Epirubicin (EPI) is a commonly used anthracycline for the treatment of breast cancer in clinic, the serious side effects limit its long-term administration including myelosuppression and cardiomyopathy. Nanomedicines have been widely utilized as drug delivery vehicles to achieve precise targeting of breast cancer cells. Herein, we prepared a DSPE-PEG nanocarrier conjugated a peptide, which targeted the breast cancer overexpression protein Na+/K+ ATPase α1 (NKA-α1). The nanocarrier encapsulated the EPI and grafted with the NKA-α1 targeting peptide through the click reaction between maleimide and thiol groups. The EPI was slowly released from the nanocarrier after entering the breast cancer cells with the guidance of the targeting NKA-α1 peptide. The precise and controllable delivery and release of the EPI into the breast cancer cells dramatically inhibited the cells proliferation and migration in vitro and suppressed the tumor volume in vivo. These results demonstrate significant prospects for this nanocarrier as a promising platform for numerous chemotherapy drugs.


Cancers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 480
Author(s):  
Rakshitha Pandulal Miskin ◽  
Janine S. A. Warren ◽  
Abibatou Ndoye ◽  
Lei Wu ◽  
John M. Lamar ◽  
...  

In the current study, we demonstrate that integrin α3β1 promotes invasive and metastatic traits of triple-negative breast cancer (TNBC) cells through induction of the transcription factor, Brain-2 (Brn-2). We show that RNAi-mediated suppression of α3β1 in MDA-MB-231 cells caused reduced expression of Brn-2 mRNA and protein and reduced activity of the BRN2 gene promoter. In addition, RNAi-targeting of Brn-2 in MDA-MB-231 cells decreased invasion in vitro and lung colonization in vivo, and exogenous Brn-2 expression partially restored invasion to cells in which α3β1 was suppressed. α3β1 promoted phosphorylation of Akt in MDA-MB-231 cells, and treatment of these cells with a pharmacological Akt inhibitor (MK-2206) reduced both Brn-2 expression and cell invasion, indicating that α3β1-Akt signaling contributes to Brn-2 induction. Analysis of RNAseq data from patients with invasive breast carcinoma revealed that high BRN2 expression correlates with poor survival. Moreover, high BRN2 expression positively correlates with high ITGA3 expression in basal-like breast cancer, which is consistent with our experimental findings that α3β1 induces Brn-2 in TNBC cells. Together, our study demonstrates a pro-invasive/pro-metastatic role for Brn-2 in breast cancer cells and identifies a role for integrin α3β1 in regulating Brn-2 expression, thereby revealing a novel mechanism of integrin-dependent breast cancer cell invasion.


2021 ◽  
pp. 096032712199945
Author(s):  
AT Aliyev ◽  
S Ozcan-Sezer ◽  
A Akdemir ◽  
H Gurer-Orhan

Apigenin, a flavonoid, is reported to act as an estrogen receptor (ER) agonist and inhibit aromatase enzyme. However, amentoflavone, a biflavonoid bearing two apigenin molecules, has not been evaluated for its endocrine modulatory effects. Besides, it is highly consumed by young people to build muscles, enhance mood and lose weight. In the present study, apigenin was used as a reference molecule and ER mediated as well as ER-independent estrogenic/antiestrogenic activity of amentoflavone was investigated. Antitumor activity of amentoflavone was also investigated in both ER positive (MCF-7 BUS) and triple-negative (MDA-MB-231) breast cancer cells and its cytotoxicity was evaluated in human breast epithelial cells (MCF-10A). Our data confirmed ER agonist, aromatase inhibitory and cytotoxic effects of apigenin in breast cancer cells, where no ER mediated estrogenic effect and physiologically irrelevant, slight, aromatase inhibition was found for amentoflavone. Although selective cytotoxicity of amentoflavone was found in MCF-7 BUS cells, it does not seem to be an alternative to the present cytotoxic drugs. Therefore, neither an adverse effect, mediated by an estrogenic/antiestrogenic effect of amentoflavone nor a therapeutical benefit would be expected from amentoflavone. Further studies could be performed to investigate its in vivo effects.


2021 ◽  
Vol 22 (11) ◽  
pp. 5930
Author(s):  
Catharina Melzer ◽  
Juliane von der Ohe ◽  
Tianjiao Luo ◽  
Ralf Hass

Direct cellular interactions of MDA-MB-231cherry breast cancer cells with GFP-transduced human mesenchymal stroma/stem-like cells (MSCGFP) in a co-culture model resulted in spontaneous cell fusion by the generation of MDA-MSC-hyb5cherry GFP breast cancer hybrid cells. The proliferative capacity of MDA-MSC-hyb5 cells was enhanced about 1.8-fold when compared to the parental MDA-MB-231cherry breast cancer cells. In contrast to a spontaneous MDA-MB-231cherry induced tumor development in vivo within 18.8 days, the MDA-MSC-hyb5 cells initially remained quiescent in a dormancy-like state. At distinct time points after injection, NODscid mice started to develop MDA-MSC-hyb5 cell-induced tumors up to about a half year later. Following tumor initiation, however, tumor growth and formation of metastases in various different organs occurred rapidly within about 10.5 days. Changes in gene expression levels were evaluated by RNA-microarray analysis and revealed certain increase in dormancy-associated transcripts in MDA-MSC-hyb5. Chemotherapeutic responsiveness of MDA-MSC-hyb5 cells was partially enhanced when compared to MDA-MB-231 cells. However, some resistance, e.g., for taxol was detectable in cancer hybrid cells. Moreover, drug response partially changed during the tumor development of MDA-MSC-hyb5 cells; this suggests the presence of unstable in vivo phenotypes of MDA-hyb5 cells with increased tumor heterogeneity.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1366
Author(s):  
Russell Hughes ◽  
Xinyue Chen ◽  
Natasha Cowley ◽  
Penelope D. Ottewell ◽  
Rhoda J. Hawkins ◽  
...  

Metastatic breast cancer in bone is incurable and there is an urgent need to develop new therapeutic approaches to improve survival. Key to this is understanding the mechanisms governing cancer cell survival and growth in bone, which involves interplay between malignant and accessory cell types. Here, we performed a cellular and molecular comparison of the bone microenvironment in mouse models representing either metastatic indolence or growth, to identify mechanisms regulating cancer cell survival and fate. In vivo, we show that regardless of their fate, breast cancer cells in bone occupy niches rich in osteoblastic cells. As the number of osteoblasts in bone declines, so does the ability to sustain large numbers of breast cancer cells and support metastatic outgrowth. In vitro, osteoblasts protected breast cancer cells from death induced by cell stress and signaling via gap junctions was found to provide important juxtacrine protective mechanisms between osteoblasts and both MDA-MB-231 (TNBC) and MCF7 (ER+) breast cancer cells. Combined with mathematical modelling, these findings indicate that the fate of DTCs is not controlled through the association with specific vessel subtypes. Instead, numbers of osteoblasts dictate availability of protective niches which breast cancer cells can colonize prior to stimulation of metastatic outgrowth.


Sign in / Sign up

Export Citation Format

Share Document