scholarly journals Role of Calcium Signaling in GA101-Induced Cell Death in Malignant Human B Cells

Cancers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 291 ◽  
Author(s):  
Simon Latour ◽  
Marion Zanese ◽  
Valérie Le Morvan ◽  
Anne-Marie Vacher ◽  
Nelly Menard ◽  
...  

GA101/obinutuzumab is a novel type II anti-CD20 monoclonal antibody (mAb), which is more effective than rituximab (RTX) in preclinical and clinical studies when used in combination with chemotherapy. Ca2+ signaling was shown to play a role in RTX-induced cell death. This report concerns the effect of GA101 on Ca2+ signaling and its involvement in the direct cell death induced by GA101. We reveal that GA101 triggered an intracellular Ca2+ increase by mobilizing intracellular Ca2+ stores and activating Orai1-dependent Ca2+ influx in non-Hodgkin lymphoma cell lines and primary B-Cell Chronic Lymphocytic Leukemia (B-CLL) cells. According to the cell type, Ca2+ was mobilized from two distinct intracellular compartments. In Raji, BL2, and B-CLL cells, GA101 induced a Ca2+ release from lysosomes, leading to the subsequent lysosomal membrane permeabilization and cell death. Inhibition of this calcium signaling reduced GA101-induced cell death in these cells. In SU-DHL-4 cells, GA101 mobilized Ca2+ from the endoplasmic reticulum (ER). Inhibition of ER replenishment, by blocking Orai1-dependent Ca2+ influx, led to an ER stress and unfolded protein response (UPR) which sensitized these cells to GA101-induced cell death. These results revealed the central role of Ca2+ signaling in GA101’s action mechanism, which may contribute to designing new rational drug combinations improving its clinical efficacy.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2467-2467
Author(s):  
Lina Reslan ◽  
Stéphane Dalle ◽  
Cindy Tournebize ◽  
Stephanie Herveau ◽  
Emeline Cros ◽  
...  

Abstract Abstract 2467 GA101, a novel glycoengineered type II IgG1 antibody against CD20, has shown a direct and immune effector cell-mediated cytotoxicity in numerous B-cell disorders. Chronic Lymphocytic Leukemia (CLL) is the most common hematologic malignancy in the western world. Since circulating mature B-CLL cells express high levels of antiapoptotic proteins that are implicated in the survival mechanism, we investigated whether the effects of GA101 compared to rituximab, induces apoptosis in these cells and what mechanism underlies GA101-mediated cytotoxicity. CLL cells were isolated from peripheral blood samples by density gradient centrifugation and B lymphocytes were purified by a negative selection method using the EasySep® B Cell Enrichment Cocktail. Cell viability was measured flow cytometrically by annexinV binding. We assessed the mitochondrial transmembrane potential (ΔΨm) by staining with 3,3-dihexyloxacarbocyanine iodide (DiOC6[3]), the generation of reactive oxygen species by staining with Dihydroethidine (DHE) as well as cytochrome c release. Moreover, the expression of several apoptosis-regulating proteins, including the Bcl-2 family proteins (Bcl-2, Bcl-XL, Mcl-1, Bax, Bak and Bad) and the activation of the caspase cascade were evaluated by immunoblotting on 34 fresh peripheral blood B-CLL specimens. We showed that GA101 initiates an early extensive cell death. The average decrease of viability of freshly isolated and purified CLL cells 24 hours post-treatment with 10μg/ml of anti CD20 antibodies were 37.6% for GA101 (n=11) and 28.8% for Rituximab (n=11). The GA101-induced cell death was paralleled by a rapid loss of mitochondrial membrane potential accompanied with the production of ROS and cytochrome c release that occurred significantly as early as 3 hours post-treatment. However, rituximab was unable to initiate a loss of ΔΨm and the production of ROS. The use of antioxidants such as N-acetyl cysteine and L-ascorbic acid were unable to circumvent either the GA101-induced cell death or the loss of ΔΨm. However, the preincubation of CLL cells with Z-VAD.fmk (N-benzyloxycarbonyl-Val-Ala-Asp fluoromethyl ketone), a broad caspase inhibitor, abolished the exposure of phosphatidylserine residues, the generation of reactive oxygen species and reversed the loss of ΔΨm. Furthermore no change was observed in the expression level of Bcl2 pro-survival family members, while GA101 induced the pro-apoptotic proteins such as Bax and Bak and caused cleavage of the active form of caspase 9 and 3 and the proteolytic cleavage of PARP, in 5 out of 9 patients studied. Altogether, these data show that GA101 induced-cell death in B-CLL cells, unlike what has been observed in cell lines, is mediated by a caspase-dependent mechanism involving the loss of ΔΨm and the generation of ROS. Ongoing studies aim to analyze the role, the conformational changes and the cellular redistribution of Bax and Bak in response to GA101 and the modifications of other apoptosis-related proteins in CLL cells. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3979-3979
Author(s):  
Margot Jak ◽  
Gregor van Bochove ◽  
Christian Klein ◽  
Pablo Umana ◽  
Eric Eldering ◽  
...  

Abstract Abstract 3979 Although treatment results for Chronic Lymphocytic Leukemia (CLL) have improved considerably over the last decade, unfortunately a curative treatment is still not available. In part this might be due to the interaction of CLL cells with their micro-environment in lymph nodes, spleen and bone marrow. Micro-environment derived signals are not only capable of driving proliferation of CLL cells, but can also induce resistance of CLL to cytotoxic drugs. Previously we have shown that in vitro CD40 stimulation of peripheral blood derived CLL cells can to a certain extent mimic the lymph node microenvironment and result in resistance to cytotoxic drugs (Kater AP et al. Br J Haematol 2004;127:404; Smit LA et al. Blood 2007;109:1660.; Hallaert DY et al. Blood 2008;112:5141). At present it is not known whether sensitivity of CLL cells to CD20 monoclonal antibodies (mAbs) is modulated by micro environmental stimuli. Therefore in the present study we investigated anti-CD20 mediated cell death of CD40-stimulated CLL cells from 17 CLL patients. We observed that in sharp contrast with the response towards cytotoxic drugs, CD40 stimulation sensitizes CLL cells to cell death mediated by anti-CD20 mAbs. In CD40-stimulated CLL cells, cell death induced by both Rituximab (a type I anti-CD20 mAb) and GA101 (a novel type II anti-CD20 mAb) (Moessner E et al. Blood, 2010;127:404, 115(22):4393-402) is increased. Both anti-CD20 mAbs induce a non-apoptotic, caspase- and p53-independent rapid cell death, but interestingly the mechanism of Rituximab and GA101-induced cell death appears to be different. Rituximab-induced cell death is dependent on extracellular Ca2+ and ROS production and CD40 stimulation sensitizes CLL cells by increasing basal ROS production. In contrast, GA101 induces cell death via a lysosome-dependent mechanism and CD40 stimulation sensitizes CLL cells by increasing the lysosomal volume of the cell. Moreover, in contrast to Rituximab, GA101 induces cell death in the absence of a secondary crosslinking mAb. Combination of GA101 with fludarabine, chlorambucil, bortezomib or bendamustine shows additive effects and results in strong cell death of CD40-stimulated CLL cells, even in p53 dysfunctional CLL cells. Our findings not only provide a rationale for combining cytotoxic drugs and anti-CD20 monoclonal antibodies, but also show that GA101 is a potent promising new anti-CD20 mAb for the treatment of CLL. Disclosures: Klein: Roche: Employment, Equity Ownership, Patents & Royalties.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 492-492 ◽  
Author(s):  
Adrien Cosson ◽  
Elise Chapiro ◽  
Jérome Lambert ◽  
Hong-Anh Cung ◽  
Caroline Algrin ◽  
...  

Abstract Introduction: CLL is a heterogeneous disease in terms of response to treatment, with some patients reaching complete and prolonged remissions, while others relapsing early and requiring several lines of treatments. This highly variable course is partly explained by the existence of a heterogenic panel of genetic alterations (mutations, chromosomal abnormalities) that allow the development of drug-resistant aggressive CLL subclones. Therefore, a functional characterization of the cytogenetic alterations associated to CLL drug resistance may provide new means of improving the current therapeutic strategies. We and others have already reported that the gain of 2p (2p+) is recurrent in CLL. However, the candidate gained gene(s) on the 2p remain to be identified. Previously data: we have observed that the 2p gain is frequent in previously untreated CLL Binet stages B/C (21/132, 15.9%), and is associated with bad prognostic factors, such as 11q deletion (p=0.0008) and unmutated IGHV (p=0.02). Using a SNP-array approach, we have identified a minimally gained region of 1.28Mb on 2p16.1-15. This region included the gene CRM1/XPO1 (Chromosome Region Maintenance 1/Exportin-1), a gene also recurrently mutated in CLL. A qPCR assessment confirmed that XPO1 was overexpressed in the 2p+/CLL patients (1.4-fold increase compared to 2p-/CLL; p=0.02). The objective of our work was to identify the potential role of XPO1 in CLL drug resistance by using the selective XPO1 inhibitor Selinexor (KPT-330, provided by Karyopharm Therapeutics), which is currently in Phase II human clinical trials in hematological and solid cancers. Methods: We have analyzed 36 2p+/CLL and we have searched for XPO1 mutations in 436 CLL samples. CLL drug resistance associated to XPO1 overexpression/mutation was assessed by measuring the rate of programmed cell death (PCD) on cells from 2p- and wildtype (wt) XPO1/CLL (n=20), 2p+/XPO1 wt/CLL (n=8) and on XPO1 mut/CLL (n=6). After 24 hours treatment with Fludarabin + Cyclophosphamid + Rituximab (FCR), Ibrutinib (Ibru), Idelalisib + Rituximab (Ide+R) and Selinexor, cells were stained with Annexin-V and propidium iodide and PCD was assessed by flow cytometry. KPT-301 was used as a negative control. For the inhibition assay, the inhibitor Q-VD-Oph was added 30 min before inducing cell death. Mitochondrial membrane depolarisation was assessed using tetramethyllrhodamine ethyl ester probe and flow cytometry analysis. Results: (i) Using a FISH approach, we fully confirmed the gain of XPO1 in 2p+/CLL samples. Additionally, we found that the XPO1 gain was often subclonal, suggesting that it tends to arise late in leukemic development. Longitudinal FISH analyses, performed on 8 2p+/CLL-treated patients, showed a similar or increasing percentage of cells carrying XPO1 gain at relapse, when compared to diagnosis; (ii) XPO1 was mutated in 23/436 (5.3%) CLL and in 2/30 (6.7%) 2p+/CLL; (iii) Selinexor induced PCD in 2p-/XPO1 wt/CLL (35% of PCD). The results were similar in all tested CLL, independently of prognostic factors (del13q, tri12, del11q, del17p, IGHV status), while sparing the non leukemic cells from patients or B cells from healthy donors; (iv) Selinexor induced CLL PCD through a caspase-dependant apoptotic pathway, as evidenced by inhibition of cell death by Q-VD-Oph, and cleavage of the caspase-3. Selinexor also induced mitochondrial depolarization and was associated with upregulation and activation of the pro-apopototic Bax protein; (v) XPO1 mut/CLL were significantly resistant to PCD induced by Selinexor (p=0.003). In contrast, the mutations in XPO1 had no effect in FCR and Ibru PCD induction; (vi) 2p+/CLL cells were resistant to PCD induced by all tested drugs: FCR (p=0.01), Ibru (p=0.003), Ide+R (p=0.004) and Selinexor (p=0.0001). Conclusion: Our data show that 2p+/CLL is associated to FCR, Ibru and Ide+R drug resistance. Strikingly, Selinexor, a new XPO1 inhibitor, is unable to induce PCD in 2p+ and/or XPO1 mut CLL, which strongly suggests a key role for XPO1 in the CLL drug resistance associated to the 2p gain. Altogether, our work provide substantial progress in the understanding of the role of XPO1 in CLL drug resistance and suggests that the assessment of the 2p gain and the mutations in XPO1 will be considered before to decide a CLL therapy. As 2p gain could be observed in other B malignancies, it is tempting to extend these recommendations to all Selinexor treatments. Disclosures Choquet: Janssen: Consultancy; Roche: Consultancy. Leblond:Janssen: Consultancy, Honoraria, Speakers Bureau; GSK: Consultancy, Honoraria, Speakers Bureau; Gilead: Consultancy, Honoraria, Speakers Bureau; Roche: Consultancy, Honoraria, Other: Travel, Accommodations, Expenses, Speakers Bureau; Mundipharma: Honoraria.


2021 ◽  
Vol 10 (10) ◽  
pp. 2064
Author(s):  
Alessandro Noto ◽  
Ramona Cassin ◽  
Veronica Mattiello ◽  
Gianluigi Reda

Autoimmune cytopenias (AICs) have been reported as a common complication in chronic lymphocytic leukemia (CLL) with autoimmune hemolytic anemia (AIHA), accounting for most cases. According to iwCLL guidelines, AICs poorly responsive to corticosteroids are considered indication for CLL-directed treatment. Chemo-immunotherapy has classically been employed, with variable results, and little data are available on novel agents, the current backbone of CLL therapy. The use of idelalisib in the setting of AICs is controversial and recent recommendations suggest avoiding idelalisib in this setting. Ibrutinib, through ITK-driven Th1 polarization of cell-mediated immune response, is known to produce an immunological rebalancing in CLL, which stands as a fascinating rationale for its use to treat autoimmunity. Although treatment-emergent AIHA has rarely been reported, ibrutinib has shown rapid and durable responses when used to treat AIHA arising in CLL. There is poor evidence regarding the role of BCL-2 inhibitors in CLL-associated AICs and the use of venetoclax in such cases is debated. Furthermore, their frequent use in combination with anti-CD20 agents might represent a confounding factor in evaluating their efficacy. In conclusions, because of their ability to mitigate an immunological dysregulation that is (at least partly) responsible for autoimmunity in CLL, to date BTK-inhibitors stand out as the most suitable choice when treatment of autoimmune cytopenias is required.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1690-1690
Author(s):  
Leo Kretzner ◽  
Anna Scuto ◽  
Kowolik Claudia ◽  
Richard Jove ◽  
Stephen J Forman ◽  
...  

Abstract Abstract 1690 Poster Board I-716 Background Patients with relapsed or refractory Hodgkin (HL) and Non Hodgkin Lymphoma (NHL) have few options after salvage therapy and transplant, and new agents are thus needed. MK-5108 is a novel aurora kinase inhibitor (AKI) with specificity against aurora kinase A, that produces G2/M phase cell cycle arrest. We show that addition of vorinostat, a histone and protein deacetylase inhibitor, to AKI treatment results in reactivation of proapoptotic genes and enhanced lymphoma cell death. A panel of HL and NHL cell lines was studied with either drug or the combination, using cell growth, apoptosis, and flow cytometry assays, followed by molecular studies. Results MK-5108 alone at 0.1 – 3 mM results in significant growth inhibition and apoptosis in multiple cell lines representing Hodgkin, Burkitt, and Non-Hodgkin lymphoma types, interestingly,DHL-4 and DHL-6 cells were more sensitive to this agent than to the pan-AKI MK-0457. Vorinostat alone at a dose range of 0.5 – 3 mM reduces cell growth by 50% or more in all lines tested. The combination of 1.5 mM vorinostat and 100 nM MK-5108 results in over 85% apoptosis of multiple lymphoma lines tested at 72 hours. Cell cycle analyses by FACS of MK-5108 treated cells show an increased percentage of cells in G2/M with few cells in sub-G1, whereas in combination with vorinostat the G2/M peak decreases and there is a significant increase in the apoptotic sub-G1 population. Real-time PCR analysis and immunoblotting of L540 cells treated with either single agent or in combination revealed that vorinostat treatment leads to alteration in pro-apoptosis, growth arrest, and DNA damage response genes. Myc mRNA and protein levels are reduced by vorinostat, and repression of microRNAs (miRNAs) in the Myc-regulated polycistronic cluster of miRNAs of chromosome 13, such as miR-17.5p, -17.3p, and 18, occurs with vorinostat and TSA. Prosurvival genes such as bcl-XL and hTERT are downregulated five-fold by vorinostat treatment, while the proapoptotic BAK gene is upregulated 1.5 – 2-fold. Vorinostat treatment leads to enhanced acetylation of p53, with a corresponding increase in the p53 target genes p21 and Noxa. To analyze the role of Myc inhibition in the sensitization by vorinostat of lymphoma cells to MK-5108, siRNA-mediated knock-down of Myc expression in L540 cells was performed. The siRNA-Myc transfected L540 cells showed enhanced sensitivity to MK-5108 as compared to control siRNA-null cells, as well as decreased hTERT levels, confirming the role of Myc inhibition by vorinostat as an integral part of the sensitization of lymphoma cells to MK-5108. Conclusions The HDACi vorinostat leads to both transcriptional and post-transcriptional changes that create a pro-apoptotic milieu, sensitizing the cell to centrosome-acting agents such as the aurora kinase A inhibitor MK-5108. These preclinical data support clinical trials of MK-5108 plus vorinostat in patients with relapsed or refractory lymphomas. [We acknowledge Merck Inc for providing Vorinostat, MK-0457, MK-5108, and research support.] Disclosures Kretzner: Merck: Research Funding. Yen:Merck: Research Funding. Kirschbaum:Merck: Research Funding, Speakers Bureau.


Haematologica ◽  
2009 ◽  
Vol 94 (4) ◽  
pp. 507-517 ◽  
Author(s):  
S. Barbier ◽  
L. Chatre ◽  
M. Bras ◽  
P. Sancho ◽  
G. Roue ◽  
...  

2007 ◽  
Vol 13 (18) ◽  
pp. 5564s-5571s ◽  
Author(s):  
Pierre-Yves Brard ◽  
Habibe Karacay ◽  
Rhona Stein ◽  
Robert M. Sharkey ◽  
M. Jules Mattes ◽  
...  

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 930-930 ◽  
Author(s):  
Rebecca Dielschneider ◽  
Hannah Eisenstat ◽  
James B. Johnston ◽  
Spencer B Gibson

Abstract Introduction: Chronic lymphocytic leukemia (CLL) is the most common adult leukemia in North America. Despite many therapeutic advances over the past decade, drug resistance and disease recurrence are common. Novel therapeutic approaches are therefore required to treat CLL. One novel target identified in a variety of cancers, including acute myeloid leukemia, is the lysosome. In transformed cancerous cells, lysosomes were found to be sensitive to permeabilization by lysotropic agents in a process called lysosome membrane permeabilization. Permeabilization of lysosomes releases their acidic and proteolytic contents into the cytoplasm causing lysosome-mediated cell death. The therapeutic strategy of targeting lysosomes has yet to be determined in CLL. Methods: Primary CLL cells were purified from patient peripheral blood using negative selection and separated on a ficoll gradient. Three different lysosome-targeting drugs used in the clinic for other purposes were investigated: a quinolone, a fluoroquinolone antibiotic, and a cationic drug (CAD). To determine the mechanism of action, various dyes were used to stain lysosomes, mitochondria, and reactive oxygen species. Fluorescence was visualized under the confocal microscope and quantified using flow cytometry. To determine the role of reactive oxygen species (ROS) the antioxidants α-tocopherol, lycopene, N-acetyl cysteine, and glutathione were added to cells. To determine the role of proteases the inhibitors zVADfmk, Ca-074-Me, Chymostatin, and E64 were added to cells. Results: All the lysotropic agents except the antibiotic effectively killed CLL cells isolated from patients. The CAD had the greatest activity and was significantly more cytotoxic to the CLL cells as compared to T cells from the same patients and peripheral blood mononuclear cells from non-CLL donors. Treatment was equally effective in p53-proficient and p53-deficient CLL cells, demonstrating that the most aggressive and drug-resistant CLL cells were sensitive to this CAD. Mechanistic studies revealed that lysosome membrane permeabilization occurred within minutes and led to an increase in ROS and loss of mitochondrial membrane potential. The permeabilization of lysosomes was further confirmed by the translocation of transcription factor EB (TFEB) into the nucleus indicating promotion of lysosomal biogenesis. Lipid ROS were necessary to induce cell death, as only lipophilic antioxidants prevented cell death. Lipophilic antioxidants did not prevent lysosomal permeabilization, but did prevent downstream mitochondrial dysfunction. Inhibitors of caspases and lysosomal cathepsins failed to prevent cell death in CLL cells. Conclusions: Results show that the lysosome-targeting quinolone and CAD effectively permeabilize lysosomes and induce lysosome-mediated cell death in primary human CLL cells. This unique mechanism of cell death in CLL is dependent on the generation of lipid ROS, but not on the action of caspases or cathepsins. Overall, targeting lysosomes may be an effective strategy to selectively kill CLL cells regardless of p53 expression. Future studies are focused on the lysosomal differences in B cells and CLL cells. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Vol 37 ◽  
pp. 379-380
Author(s):  
A. Santamaria Lopez ◽  
E. Perez Persona ◽  
L. Cuevas Palomares ◽  
I. Oiartzabal Ormategui ◽  
A. Unamunzaga Cilaurren ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document