scholarly journals TWIST1 Heterodimerization with E12 Requires Coordinated Protein Phosphorylation to Regulate Periostin Expression

Cancers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1392
Author(s):  
Svetlana A. Mikheeva ◽  
Nathan D. Camp ◽  
Lei Huang ◽  
Antrix Jain ◽  
Sung Yun Jung ◽  
...  

Diffuse invasion into adjacent brain matter by glioblastoma (GBM) is largely responsible for their dismal prognosis. Previously, we showed that the TWIST1 (TW) bHLH transcription factor and its regulated gene periostin (POSTN) promote invasive phenotypes of GBM cells. Since TW functional effects are regulated by phosphorylation and dimerization, we investigated how phosphorylation of serine 68 in TW regulates TW dimerization, POSTN expression, and invasion in glioma cells. Compared with wild-type TW, the hypophosphorylation mutant, TW(S68A), impaired TW heterodimerization with the E12 bHLH transcription factor and cell invasion in vitro but had no effect on TW homodimerization. Overexpression of TW:E12 forced dimerization constructs (FDCs) increased glioma cell invasion and upregulated pro-invasive proteins, including POSTN, in concert with cytoskeletal reorganization. By contrast, TW:TW homodimer FDCs inhibited POSTN expression and cell invasion in vitro. Further, phosphorylation of analogous PXSP phosphorylation sites in TW:E12 FDCs (TW S68 and E12 S139) coordinately regulated POSTN and PDGFRa mRNA expression. These results suggested that TW regulates pro-invasive phenotypes in part through coordinated phosphorylation events in TW and E12 that promote heterodimer formation and regulate downstream targets. This new mechanistic understanding provides potential therapeutic strategies to inhibit TW-POSTN signaling in GBM and other cancers.

Author(s):  
Haiyang Xu ◽  
Guifang Zhao ◽  
Yu Zhang ◽  
Hong Jiang ◽  
Weiyao Wang ◽  
...  

Abstract Background Gliomas are common life-threatening cancers, mainly due to their aggressive nature and frequent invasiveness and long non-coding RNAs (lncRNAs) are emerging as promising molecular targets. Therefore, we explored the regulatory mechanisms underlying the putative involvement of the lncRNA PAX-interacting protein 1- antisense RNA1/ETS proto-oncogene 1/kinesin family member 14 (PAXIP1-AS1/ETS1/KIF14) axis in glioma cell invasion and angiogenesis. Methods Firstly, we identified differentially expressed lncRNA PAXIP1-AS1 as associated with glioma based on bioinformatic data. Then, validation experiments were conducted to confirm a high expression level of lncRNA PAXIP1-AS1 in glioma tissues and cells, accompanied by upregulated KIF14. We further examined the binding between lncRNA PAXIP1-AS1, KIF14 promoter activity, and transcription factor ETS1. Next, overexpression vectors and shRNAs were delivered to alter the expression of lncRNA PAXIP1-AS1, KIF14, and ETS1 to analyze their effects on glioma progression in vivo and in vitro. Results LncRNA PAXIP1-AS1 was mainly distributed in the nucleus of glioma cells. LncRNA PAXIP1-AS1 could upregulate the KIF14 promoter activity by recruiting transcription factor ETS1. Overexpression of lncRNA PAXIP1-AS1 enhanced migration, invasion, and angiogenesis of human umbilical vein endothelial cells in glioma by recruiting the transcription factor ETS1 to upregulate the expression of KIF14, which was further confirmed by accelerated tumor growth in nude mice. Conclusions The key findings of this study highlighted the potential of the lncRNA PAXIP1-AS1/ETS1/KIF14 axis as a therapeutic target for glioma treatment, due to its role in controlling the migration and invasion of glioma cells and its angiogenesis.


Cancers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 480
Author(s):  
Rakshitha Pandulal Miskin ◽  
Janine S. A. Warren ◽  
Abibatou Ndoye ◽  
Lei Wu ◽  
John M. Lamar ◽  
...  

In the current study, we demonstrate that integrin α3β1 promotes invasive and metastatic traits of triple-negative breast cancer (TNBC) cells through induction of the transcription factor, Brain-2 (Brn-2). We show that RNAi-mediated suppression of α3β1 in MDA-MB-231 cells caused reduced expression of Brn-2 mRNA and protein and reduced activity of the BRN2 gene promoter. In addition, RNAi-targeting of Brn-2 in MDA-MB-231 cells decreased invasion in vitro and lung colonization in vivo, and exogenous Brn-2 expression partially restored invasion to cells in which α3β1 was suppressed. α3β1 promoted phosphorylation of Akt in MDA-MB-231 cells, and treatment of these cells with a pharmacological Akt inhibitor (MK-2206) reduced both Brn-2 expression and cell invasion, indicating that α3β1-Akt signaling contributes to Brn-2 induction. Analysis of RNAseq data from patients with invasive breast carcinoma revealed that high BRN2 expression correlates with poor survival. Moreover, high BRN2 expression positively correlates with high ITGA3 expression in basal-like breast cancer, which is consistent with our experimental findings that α3β1 induces Brn-2 in TNBC cells. Together, our study demonstrates a pro-invasive/pro-metastatic role for Brn-2 in breast cancer cells and identifies a role for integrin α3β1 in regulating Brn-2 expression, thereby revealing a novel mechanism of integrin-dependent breast cancer cell invasion.


2012 ◽  
Vol 56 (8) ◽  
pp. 4146-4153 ◽  
Author(s):  
Zaid Al-Nakeeb ◽  
Ajay Sudan ◽  
Adam R. Jeans ◽  
Lea Gregson ◽  
Joanne Goodwin ◽  
...  

ABSTRACTItraconazole is used for the prevention and treatment of infections caused byAspergillus fumigatus. An understanding of the pharmacodynamics of itraconazole against wild-type and triazole-resistant strains provides a basis for innovative therapeutic strategies for treatment of infections. Anin vitromodel of the human alveolus was used to define the pharmacodynamics of itraconazole. Galactomannan was used as a biomarker. The effect of systemic and airway administration of itraconazole was assessed, as was a combination of itraconazole administered to the airway and systemically administered 5FC. Systemically administered itraconazole against the wild type induced a concentration-dependent decline in galactomannan in the alveolar and endothelial compartments. No exposure-response relationships were apparent for the L98H, M220T, or G138C mutant. The administration of itraconazole to the airway resulted in comparable exposure-response relationships to those observed with systemic therapy. This was achieved without detectable concentrations of drug within the endothelial compartment. The airway administration of itraconazole resulted in a definite but submaximal effect in the endothelial compartment against the L98H mutant. The administration of 5FC resulted in a concentration-dependent decline in galactomannan in both the alveolar and endothelial compartments. The combination of airway administration of itraconazole and systemically administered 5FC was additive. Systemic administration of itraconazole is ineffective against Cyp51 mutants. The airway administration of itraconazole is effective for the treatment of wild-type strains and appears to have some activity against the L98H mutants. Combination with other agents, such as 5FC, may enable the attainment of near-maximal antifungal activity.


2021 ◽  
Vol 17 (3) ◽  
pp. e1009116
Author(s):  
Allison N. Dammann ◽  
Anna B. Chamby ◽  
Andrew J. Catomeris ◽  
Kyle M. Davidson ◽  
Hervé Tettelin ◽  
...  

Streptococcus agalactiae (group B Streptococcus; GBS) remains a dominant cause of serious neonatal infections. One aspect of GBS that renders it particularly virulent during the perinatal period is its ability to invade the chorioamniotic membranes and persist in amniotic fluid, which is nutritionally deplete and rich in fetal immunologic factors such as antimicrobial peptides. We used next-generation sequencing of transposon-genome junctions (Tn-seq) to identify five GBS genes that promote survival in the presence of human amniotic fluid. We confirmed our Tn-seq findings using a novel CRISPR inhibition (CRISPRi) gene expression knockdown system. This analysis showed that one gene, which encodes a GntR-class transcription factor that we named MrvR, conferred a significant fitness benefit to GBS in amniotic fluid. We generated an isogenic targeted deletion of the mrvR gene, which had a growth defect in amniotic fluid relative to the wild type parent strain. The mrvR deletion strain also showed a significant biofilm defect in vitro. Subsequent in vivo studies showed that while the mutant was able to cause persistent murine vaginal colonization, pregnant mice colonized with the mrvR deletion strain did not develop preterm labor despite consistent GBS invasion of the uterus and the fetoplacental units. In contrast, pregnant mice colonized with wild type GBS consistently deliver prematurely. In a sepsis model the mrvR deletion strain showed significantly decreased lethality. In order to better understand the mechanism by which this newly identified transcription factor controls GBS virulence, we performed RNA-seq on wild type and mrvR deletion GBS strains, which revealed that the transcription factor affects expression of a wide range of genes across the GBS chromosome. Nucleotide biosynthesis and salvage pathways were highly represented among the set of differentially expressed genes, suggesting that MrvR may be involved in regulating nucleotide availability.


2010 ◽  
Vol 16 (4) ◽  
pp. 509-514 ◽  
Author(s):  
Qiang Huang ◽  
Zhibo Xia ◽  
Yongping You ◽  
Peiyu Pu

2013 ◽  
Vol 6 (273) ◽  
pp. ec97-ec97 ◽  
Author(s):  
Annalisa M. VanHook

In addition to contributing to the immune response against pathogens, helper T (TH ) cells that produce the cytokine interleukin-17 (IL-17) also contribute to autoimmune diseases. Maintenance of both normal and pathogenic TH17 cell activities depends on activation of the IL-23 receptor (IL-23R). By performing transcriptional profiling and network analysis of transcriptional changes in wild-type and Il23r–/– mouse T cells that were activated and induced to differentiate into TH17 cells, Wu et al. identified serum glucocorticoid kinase 1 (Sgk1) as a key node downstream of IL-23R. In vitro differentiation of naïve T cells from Sgk1–/– mice revealed that SGK1 was not required for primary TH17 cell differentiation but was required for maintenance of TH17 cells and continued signaling through IL-23R. Analysis of experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis, in Sgk1–/– animals showed that these mice had reduced incidence of disease, severity of symptoms, and production of IL-17 compared with EAE in wild-type animals. In vitro experiments were consistent with a model in which SGK1 phosphorylates the transcription factor Foxo1 to repress its ability to indirectly activate Il23r expression. SGK1 mediates sodium (Na+) homeostasis by modulating the activity of epithelial Na+ channels, so the authors tested the effect of Na+ on TH17 cell differentiation. Increasing the concentration of NaCl in the culture medium increased expression of Sgk1, Il23r, Il17, and other genes associated with TH17 differentiation in wild-type, but not Sgk1–/–, T cells that had been activated but not treated with factors to influence their development into a particular type of TH cell. Compared with a normal diet, a high-salt diet increased the number of TH17 cells in the guts of wild-type mice but induced a milder increase in the abundance of TH17 cells in Sgk1–/– mice. In the EAE model, mice on a high-salt diet showed increased severity of disease compared with those fed a normal diet. However, a high-salt diet had a much milder effect on disease symptoms in Sgk1–/– mice. In a related study, Kleinewietfeld etal. differentiated naïve human T cells in culture conditions that mimicked the interstitial fluid of animals fed a high-salt diet and found that the additional NaCl promoted differentiation of TH17 cells that expressed markers consistent with autoimmune activity. Further experiments indicated that this effect was mediated by the kinase p38, the transcription factor and p38 target NFAT5, and the NFAT5 target Sgk1. In vivo experiments performed in this study were consistent with those reported by Wu et al. These studies suggest that production of the pathogenic TH17 cells that contribute to autoimmunity may be exacerbated by dietary salt. Commentary by O’Shea and Jones considers the implications and limitations of these findings in the context of autoimmune disease.C. Wu, N. Yosef, T. Thalhamer, C. Zhu, S. Xiao, Y. Kishi, A. Regev, V. K. Kuchroo, Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1. Nature496, 513–517 (2013). [PubMed]M. Kleinewietfeld, A. Manzel, J. Titze, H. Kvakan, N. Yosef, R. A. Linker, D. N. Muller, D. A. Hafler, Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature496, 518–522 (2013). [PubMed]J. J. O’Shea, R. G. Jones, Rubbing salt in the wound. Nature496, 437–439 (2013). [PubMed]


Blood ◽  
1999 ◽  
Vol 94 (9) ◽  
pp. 3037-3047 ◽  
Author(s):  
Jack Levin ◽  
Jin-Peng Peng ◽  
Georgiann R. Baker ◽  
Jean-Luc Villeval ◽  
Patrick Lecine ◽  
...  

Abstract Expression of the p45 subunit of transcription factor NF-E2 is restricted to selected blood cell lineages, including megakaryocytes and developing erythrocytes. Mice lacking p45 NF-E2 show profound thrombocytopenia, resulting from a late arrest in megakaryocyte differentiation, and a number of red blood cell defects, including anisocytosis and hypochromia. Here we report results of studies aimed to explore the pathophysiology of these abnormalities. Mice lacking NF-E2 produce very few platelet-like particles that display highly disorganized ultrastructure and respond poorly to platelet agonists, features consistent with the usually lethal hemorrhage in these animals. Thrombocytopenia was evident during fetal life and was not corrected by splenectomy in adults. Surprisingly, fetal NF-E2–deficient megakaryocyte progenitors showed reduced proliferation potential in vitro. Thus, NF-E2 is required for regulated megakaryocyte growth as well as for differentiation into platelets. All the erythroid abnormalities were reproduced in lethally irradiated wild-type recipients of hematopoietic cells derived from NF-E2-null fetuses. Whole blood from mice lacking p45 NF-E2 showed numerous small red blood cell fragments; however, survival of intact erythrocytes in vivo was indistinguishable from control mice. Considered together, these observations indicate a requirement for NF-E2 in generating normal erythrocytes. Despite impressive splenomegaly at baseline, mice lacking p45 NF-E2 survived splenectomy, which resulted in increased reticulocyte numbers. This reveals considerable erythroid reserve within extra-splenic sites of hematopoiesis and suggests a role for the spleen in clearing abnormal erythrocytes. Our findings address distinct aspects of the requirements for NF-E2 in blood cell homeostasis and establish its roles in proper differentiation of megakaryocytes and erythrocytes.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 776-776
Author(s):  
Zhongfa Yang ◽  
Alan G. Rosmarin

Abstract GABP is an ets transcription factor that regulates transcription of key myeloid genes, including CD18 (beta2 leukocyte integrin), neutrophil elastase, lysozyme, and other key mediators of the inflammatory response; it is also known to regulate important cell cycle control genes. GABP consists of two distinct and unrelated proteins that, together, form a functional transcription factor complex. GABPalpha (GABPa) is an ets protein that binds to DNA; it forms a tetrameric complex by recruiting its partner, GABPbeta (GABPb), which contains the transactivation domain. GABPa is a single copy gene in both the human and murine genomes and it is the only protein that can recruit GABPb to DNA. We cloned GABPa from a murine genomic BAC library and prepared a targeting vector in which exon 9 (which encodes the GABPa ets domain) was flanked by loxP (floxed) recombination sites. The targeting construct was electroporated into embryonic stem cells, homologous recombinants were implanted into pseudopregnant mice, heterozygous floxed GABPa mice were identified, and intercrossing yielded expected Mendelian ratios of wild type, heterozygous, and homozygous floxed GABPa mice. Breeding of heterozygous floxed GABPa mice to CMV-Cre mice (which express Cre recombinase in all tissues) yielded expected numbers of hemizygous mice (only one intact GABPa allele), but no nullizygous (GABPa−/−) mice among 64 pups; we conclude that homozygous deletion of GABPa causes an embryonic lethal defect. To determine the effect of GABPa deletion on myeloid cell development, we bred heterozygous and homozygous floxed mice to LysMCre mice, which express Cre only in myeloid cells. These mice had a normal complement of myeloid cells but, unexpectedly, PCR indicated that their Gr1+ myeloid cells retained an intact (undeleted) floxed GABPa allele. We detected similar numbers of in vitro myeloid colonies from bone marrow of wild type, heterozygous floxed, and homozygous floxed progeny of LysMCre matings. However, PCR of twenty individual in vitro colonies from homozygous floxed mice indicated that they all retained an intact floxed allele. Breeding of floxed GABPa/LysMCre mice with hemizygous mice indicated that retention of a floxed allele was not due to incomplete deletion by LysMCre; rather, it appears that only myeloid cells that retain an intact GABPa allele can survive to mature in vitro or in vivo. We prepared murine embryonic fibroblasts from homozygous floxed mice and efficiently deleted GABPa in vitro. We found striking abnormalities in proliferation and G1/S phase arrest. We used quantitative RT-PCR to identify mechanisms that account for the altered growth of GABPa null cells. We found dramatically reduced expression of known GABP target genes that regulate DNA synthesis and cell cycle that appear to account for the proliferative defect. We conclude that GABPa is required for growth and maturation of myeloid cells and we identified downstream targets that may account for their failure to proliferate and mature in vitro and in vivo.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 374-374 ◽  
Author(s):  
Zhong-fa Yang ◽  
Karen Drumea ◽  
Alan G. Rosmarin

Abstract GABP is an ets transcription factor that regulates genes that are required for innate immunity, including CD18 (β2 leukocyte integrin), lysozyme, and neutrophil elastase. GABP consists of two distinct and unrelated proteins. GABPα binds to DNA through its ets domain and recruits GABPβ, which contains the transactivation domain; together, they form a functional tetrameric transcription factor complex. We recently showed that GABP is required for entry into S phase of the cell cycle through its regulation of genes that are required for DNA synthesis and cyclin dependent kinase inhibitors (Yang, et al. Nature Cell Biol9:339, 2007). Furthermore, GABP is an essential component of a retinoic acid responsive myeloid enhanceosome (Resendes and Rosmarin Mol Cell Biol26:3060, 2006). We cloned Gabpa (the gene that encodes mouse Gabpα) from a mouse genomic BAC library and prepared a targeting vector in which the ets domain is flanked by loxP recombination sites (floxed allele). Deletion of both floxed Gabpa alleles causes an early embryonic lethal defect. In order to define the role of Gabpα in myelopoiesis, we bred floxed Gabpa mice to mice that bear the Mx1-Cre transgene, which drives expression of Cre recombinase in response to injection of the synthetic polynucleotide, poly I-C. Deletion of Gabpa dramatically reduced granulocytes and monocytes in the peripheral blood, spleen, and bone marrow, but myeloid cells recovered within weeks. In vitro colony forming assays indicated that myeloid cells in these mice were derived only from Gabpa replete myeloid precursors (that failed to delete both Gabpa alleles), suggesting strong pressure to retain Gabpα in vivo. We used a novel competitive bone marrow transplantation approach to determine if Gabp is required for myeloid cell development in vivo. Sub-lethally irradiated wild-type recipient mice bearing leukocyte marker CD45.1 received equal proportions of bone marrow from wild type CD45.1 donor mice and floxed-Mx1-Cre donor mice that bear CD45.2. Both the CD45.2 (floxed-Mx1-Cre) and CD45.1 (wild type) bone marrow engrafted well. Mice were then injected with pI-pC to induce Cre-mediated deletion of floxed Gabpa. The mature myeloid and T cell compartments were derived almost entirely from wild type CD45.1 cells. This indicates that the proliferation and/or differentiation of myeloid and T cell lineages requires Gabp. In contrast, B cell development was not impaired. We conclude that Gabpa disruption causes a striking loss of myeloid cells in vivo and corroborates prior in vitro data that GABP plays a crucial role in proliferation of myeloid progenitor cells.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 91-91
Author(s):  
Shane R. Horman ◽  
Chinamenveni S. Velu ◽  
Tristan Bourdeau ◽  
Avinash Baktula ◽  
Jinfang Zhu ◽  
...  

Abstract An intrinsic mechanism of self-renewal is critical for the maintenance of hematopoietic stem cells (HSC), but this HSC function is extinguished during differentiation of progenitors. Here we show that the self-renewal capacity of hematopoietic progenitor cells is regulated through physical competition for occupancy of select DNA binding sites. Initially, we found that conditional deletion of the Growth factor independent-1 (Gfi1) gene results in the accumulation of abnormally persistent myeloid progenitors in vivo. Specifically, while germline Gfi1 deletion induces defective HSC self renewal and a block to granulopoiesis, we find that conditional deletion of Gfi1 induces a severe but transient block to neutrophil development with repopulation of the bone marrow by the remaining wild type HSC within 8 weeks post deletion. However, even though normal levels of granulocyte colony forming units (G-CFU) returned by 8 weeks post deletion, an abnormal Gfi1−/− myeloid progenitor remained in the bone marrow in vivo. Subsequently, we find in vitro that both wild-type bone marrow cells expressing Gfi1-dominant-negative mutants, and Gfi1−/− Lin- bone marrow contain cells that replate indefinitely. We hypothesized that Gfi1 is critical to extinguish self renewal in hematopoietic progenitors. In seemingly unrelated work, we discovered antagonism between the drosophila orthologs of Gfi1 and the Hoxa9/Pbx1/Meis1 transcription factor complex during drosophila embryo segmentation. We extended our drosophila findings to discover that a subset of mammalian DNA regulatory sequences encode DNA binding sites for both Gfi1 and Hoxa9/Pbx1/Meis1. These DNA sequences are able to bind either factor, and function as a molecular switch. Interestingly, composite Gfi1/ Hoxa9/Pbx1/Meis1 binding sites are present in the regulatory regions of the gene encoding Hoxa9. We note that Gfi1 expression is normally induced, while Hoxa9 expression is down-regulated, during the transition from common myeloid progenitor (CMP) to the granulocyte-monocyte progenitor (GMP). CMP have greater self renewal potential than GMP. Conditional deletion of Gfi1 in sorted CMP or GMP both increases Hoxa9 expression and generates progenitors capable of replating indefinitely in vitro. Thus, Gfi1 is critical to limit self renewal in these progenitors. Deregulated Hoxa9 expression or activity appears pivotal to this new Gfi1-null phenotype, because Gfi1 dominant-negative mutants immortalize wild-type (or Hoxa7−/−) but not Hoxa9−/− bone marrow cells in vitro. An abnormal gain of self-renewal can unleash the leukemic potential of progenitor cells. We find that both limiting Gfi1 gene dosage and expression of Gfi1 dominant-negative mutants significantly increases Nup98-Hoxa9-mediated colony formation. In contrast, forced expression of Gfi1 prevents Nup98-Hoxa9 immortalization. Notably, the expression of Hoxa9 (independent of cases with Nup98-Hoxa9 fusions) has been reported to be of significant prognostic value in human acute myeloid leukemia. In conclusion, Gfi1 and the Hoxa9/Pbx1/Meis1 complex compete to control the expression of genes (such as Hoxa9) which are critical to extinguish self renewal and limit the leukemogenic potential of hematopoietic progenitors. The antagonism between these transcription factor complexes is conserved from drosophila segment formation to mammalian hematopoietic progenitor biology.


Sign in / Sign up

Export Citation Format

Share Document