Exacerbating Autoimmune Disease with Salt

2013 ◽  
Vol 6 (273) ◽  
pp. ec97-ec97 ◽  
Author(s):  
Annalisa M. VanHook

In addition to contributing to the immune response against pathogens, helper T (TH ) cells that produce the cytokine interleukin-17 (IL-17) also contribute to autoimmune diseases. Maintenance of both normal and pathogenic TH17 cell activities depends on activation of the IL-23 receptor (IL-23R). By performing transcriptional profiling and network analysis of transcriptional changes in wild-type and Il23r–/– mouse T cells that were activated and induced to differentiate into TH17 cells, Wu et al. identified serum glucocorticoid kinase 1 (Sgk1) as a key node downstream of IL-23R. In vitro differentiation of naïve T cells from Sgk1–/– mice revealed that SGK1 was not required for primary TH17 cell differentiation but was required for maintenance of TH17 cells and continued signaling through IL-23R. Analysis of experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis, in Sgk1–/– animals showed that these mice had reduced incidence of disease, severity of symptoms, and production of IL-17 compared with EAE in wild-type animals. In vitro experiments were consistent with a model in which SGK1 phosphorylates the transcription factor Foxo1 to repress its ability to indirectly activate Il23r expression. SGK1 mediates sodium (Na+) homeostasis by modulating the activity of epithelial Na+ channels, so the authors tested the effect of Na+ on TH17 cell differentiation. Increasing the concentration of NaCl in the culture medium increased expression of Sgk1, Il23r, Il17, and other genes associated with TH17 differentiation in wild-type, but not Sgk1–/–, T cells that had been activated but not treated with factors to influence their development into a particular type of TH cell. Compared with a normal diet, a high-salt diet increased the number of TH17 cells in the guts of wild-type mice but induced a milder increase in the abundance of TH17 cells in Sgk1–/– mice. In the EAE model, mice on a high-salt diet showed increased severity of disease compared with those fed a normal diet. However, a high-salt diet had a much milder effect on disease symptoms in Sgk1–/– mice. In a related study, Kleinewietfeld etal. differentiated naïve human T cells in culture conditions that mimicked the interstitial fluid of animals fed a high-salt diet and found that the additional NaCl promoted differentiation of TH17 cells that expressed markers consistent with autoimmune activity. Further experiments indicated that this effect was mediated by the kinase p38, the transcription factor and p38 target NFAT5, and the NFAT5 target Sgk1. In vivo experiments performed in this study were consistent with those reported by Wu et al. These studies suggest that production of the pathogenic TH17 cells that contribute to autoimmunity may be exacerbated by dietary salt. Commentary by O’Shea and Jones considers the implications and limitations of these findings in the context of autoimmune disease.C. Wu, N. Yosef, T. Thalhamer, C. Zhu, S. Xiao, Y. Kishi, A. Regev, V. K. Kuchroo, Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1. Nature496, 513–517 (2013). [PubMed]M. Kleinewietfeld, A. Manzel, J. Titze, H. Kvakan, N. Yosef, R. A. Linker, D. N. Muller, D. A. Hafler, Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature496, 518–522 (2013). [PubMed]J. J. O’Shea, R. G. Jones, Rubbing salt in the wound. Nature496, 437–439 (2013). [PubMed]

2002 ◽  
Vol 282 (2) ◽  
pp. H395-H402 ◽  
Author(s):  
Deborah M. Lenda ◽  
Matthew A. Boegehold

Increased salt intake attenuates the endothelium-dependent dilation of skeletal muscle arterioles by abolishing local nitric oxide (NO) activity. There is evidence of oxidative stress in arteriolar and venular walls of rats fed a high-salt diet, and depressed arteriolar responses to acetylcholine (ACh) in these rats are reversed by scavengers of reactive oxygen species (ROS). In this study, we tested the hypothesis that this salt-dependent increase in microvascular ROS and the resulting attenuation of endothelium-dependent dilation are due to increased expression and/or activity of oxidant enzymes in the microvascular wall. Resting arteriolar and venular wall oxidant activity, as assessed by tetranitroblue tetrazolium reduction, was consistently higher in the spinotrapezius muscle of rats fed a high-salt diet (7% NaCl, HS) for 4–5 wk than in those fed a normal diet (0.45% NaCl, NS) for the same duration. Western analysis of protein from isolated microvessels showed no difference between HS and NS rats in the expression of NAD(P)H oxidase or xanthine oxidase. Inhibition of NAD(P)H oxidase and/or xanthine oxidase with diphenyleneiodonium chloride and oxypurinol, respectively, reduced resting arteriolar wall oxidant activity to normal levels in HS rats but had no effect in NS rats, suggesting that the basal activities of NAD(P)H oxidase and xanthine oxidase are increased in HS microvessels. However, inhibition of these enzymes in HS rats did not restore normal arteriolar responses to ACh, suggesting that this stimulus activates an alternate source of ROS that eliminates the role of NO in the subsequent dilation.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Chrysan J Mohammed ◽  
Fatimah K Khalaf ◽  
Prabhatchandra Dube ◽  
Tyler J Reid ◽  
Jacob A Connolly ◽  
...  

Background: Paraoxonase 3 (Pon3), is one of the three isoforms of the paraoxonase gene family. While Pon1 and Pon2 are widely studied, there is a paucity of knowledge regarding Pon3. Pon3 is synthesized in the liver and can circulate bound to high-density lipoproteins. There is significant expression in the kidney also. Pon3 has the ability to metabolize eicosanoids, which can act as signaling molecules and have known roles in the pathophysiology of some renal diseases. Decreased Pon activity is associated with elevated levels of eicosanoid metabolites and adverse clinical outcomes. We tested the hypothesis that targeted disruption of Pon3 results in elevated levels of pro-inflammatory eicosanoids and progression of renal injury. Methods/ Results: Ten week old male Dahl salt-sensitive (SS rats) and Pon3 mutant rats (SS Pon3 KO) were maintained on 8% high salt diet for eight weeks, to initiate salt-sensitive hypertensive renal disease. Previously we observed that SS Pon3 KO rats on eight weeks high salt diet demonstrated significantly increased phenotypic renal injury and mortality. In the current study, we noted that SS Pon3 KO had significantly decreased (p<0.05) glomerular filtration rate compared to SS wild type. Blood pressure (radiotelemetry) as well as plasma angiotensin and aldosterone (LC-MS/MS) were not different between the two groups after high salt diet. We used targeted lipidomic profiling to determine eicosanoid content in renal cortex from SS Pon3 KO and SS wild type rats at the end of eight weeks of high salt diet. We found that hydroxyl fatty acids 5-HEPE and 5-HETE (5-lipoxygenase dependent arachidonic acid metabolites) were significantly (p<0.05) elevated in the renal cortex of SS Pon3 KO compared to SS wild type rats. In addition to being mediators of inflammation, these metabolites are associated with renal cell injury and death. Furthermore, prostaglandin 6-keto-PGF 1α , which has known links to renal inflammation, was significantly (p<0.05) increased in renal cortex of SS- Pon3 KO compared to SS wild type rats. Conclusion: These findings suggest that targeted deletion of Pon3 increases pro-inflammatory eicosanoids (5-HETE and 5-HEPE) and prostaglandins (6-keto-PGF 1α ), as well as increases renal damage independent of blood pressure.


2008 ◽  
Vol 295 (2) ◽  
pp. F462-F470 ◽  
Author(s):  
Peijun P. Shi ◽  
Xiao R. Cao ◽  
Eileen M. Sweezer ◽  
Thomas S. Kinney ◽  
Nathan R. Williams ◽  
...  

Nedd4-2 has been proposed to play a critical role in regulating epithelial Na+ channel (ENaC) activity. Biochemical and overexpression experiments suggest that Nedd4-2 binds to the PY motifs of ENaC subunits via its WW domains, ubiquitinates them, and decreases their expression on the apical membrane. Phosphorylation of Nedd4-2 (for example by Sgk1) may regulate its binding to ENaC, and thus ENaC ubiquitination. These results suggest that the interaction between Nedd4-2 and ENaC may play a crucial role in Na+ homeostasis and blood pressure (BP) regulation. To test these predictions in vivo, we generated Nedd4-2 null mice. The knockout mice had higher BP on a normal diet and a further increase in BP when on a high-salt diet. The hypertension was probably mediated by ENaC overactivity because 1) Nedd4-2 null mice had higher expression levels of all three ENaC subunits in kidney, but not of other Na+ transporters; 2) the downregulation of ENaC function in colon was impaired; and 3) NaCl-sensitive hypertension was substantially reduced in the presence of amiloride, a specific inhibitor of ENaC. Nedd4-2 null mice on a chronic high-salt diet showed cardiac hypertrophy and markedly depressed cardiac function. Overall, our results demonstrate that in vivo Nedd4-2 is a critical regulator of ENaC activity and BP. The absence of this gene is sufficient to produce salt-sensitive hypertension. This model provides an opportunity to further investigate mechanisms and consequences of this common disorder.


2010 ◽  
Vol 298 (6) ◽  
pp. F1384-F1392 ◽  
Author(s):  
Leah-Anne M. Ruta ◽  
Hayley Dickinson ◽  
Merlin C. Thomas ◽  
Kate M. Denton ◽  
Warwick P. Anderson ◽  
...  

The extent to which a reduced nephron endowment contributes to hypertension and renal disease is confounded in models created by intrauterine insults that also demonstrate other phenotypes. Furthermore, recent data suggest that a reduced nephron endowment provides the “first hit” and simply increases the susceptibility to injurious stimuli. Thus we examined nephron number, glomerular volume, conscious mean arterial pressure (MAP), and renal function in a genetic model of reduced nephron endowment before and after a high-salt (5%) diet. One-yr-old glial cell line-derived neurotrophic factor wild-type (WT) mice, heterozygous (HET) mice born with two kidneys (HET2K), and HET mice born with one kidney (HET1K) were used. Nephron number was 25% lower in HET2K and 65% lower in HET1K than WT mice. Glomeruli hypertrophied in both HET groups by 33%, resulting in total glomerular volumes that were similar between HET2K and WT mice but remained 50% lower in HET1K mice. On a normal-salt diet, 24-h MAP was not different between WT, HET2K, and HET1K mice (102 ± 1, 103 ± 1, and 102 ± 2 mmHg). On a high-salt diet, MAP increased 9.1 ± 1.9 mmHg in HET1K mice ( P < 0.05) and 5.4 ± 0.9 mmHg in HET2K mice ( P < 0.05) and did not change significantly in WT mice. Creatinine clearance was 60% higher in WT mice but 30% lower in HET2K and HET1K mice fed a high-salt diet than in controls maintained on a normal-salt diet. Thus a reduction in nephron number (or total glomerular volume) alone does not lead to hypertension or kidney disease in aged mice, but exposure to high salt uncovers a hypertensive and renal phenotype.


2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Juexiao Gong ◽  
Man Luo ◽  
Yonghong Yong ◽  
Shan Zhong ◽  
Peng Li

AbstractAlamandine (Ala) is a novel member of the renin–angiotensin-system (RAS) family. The present study aimed to explore the effects of Ala on hypertension and renal damage of Dahl salt-sensitive (SS) rats high-salt diet-induced, and the mechanisms of Ala on renal-damage alleviation. Dahl rats were fed with high-salt diets to induce hypertension and renal damage in vivo, and HK-2 cells were treated with sodium chloride (NaCl) to induce renal injury in vitro. Ala administration alleviated the high-salt diet-induced hypertension, renal dysfunction, and renal fibrosis and apoptosis in Dahl SS rats. The HK-2 cells’ damage, and the increases in the levels of cleaved (c)-caspase3, c-caspase8, and c-poly(ADP-ribose) polymerase (PARP) induced by NaCl were inhibited by Ala. Ala attenuated the NaCl-induced oxidative stress in the kidney and HK-2 cells. DETC, an inhibitor of SOD, reversed the inhibitory effect of Ala on the apoptosis of HK-2 cells induced by NaCl. The NaCl-induced increase in the PKC level was suppressed by Ala in HK-2 cells. Notably, PKC overexpression reversed the moderating effects of Ala on the NaCl-induced apoptosis of HK-2 cells. These results show that Ala alleviates high-salt diet-induced hypertension and renal dysfunction. Ala attenuates the renal damage via inhibiting the PKC/reactive oxygen species (ROS) signaling pathway, thereby suppressing the apoptosis in renal tubular cells.


2006 ◽  
Vol 290 (3) ◽  
pp. R553-R559 ◽  
Author(s):  
Paolo Manunta ◽  
Bruce P. Hamilton ◽  
John M. Hamlyn

High-salt diets elevate circulating Na+ pump inhibitors, vascular resistance, and blood pressure. Ouabain induces a form of hypertension mediated via the α2-Na+ pump isoform and the calcium influx mode of the vascular sodium calcium exchanger (NCX). Whereas elevated levels of an endogenous ouabain (EO) and NCX have been implicated in salt-sensitive hypertension, acute changes in sodium balance do not affect plasma EO. This study investigated the impact of longer-term alterations in sodium balance on the circulating levels and renal clearance of EO in normal humans. Thirteen normal men consumed a normal diet, high-salt diet, and hydrochlorothiazide (HCTZ), each for 5-day periods to alter sodium balance. EO and other humoral and urinary variables were determined daily. On a normal diet, urinary sodium excretion (140 ± 16 meq/day), plasma EO (0.43 ± 0.08 nmol/l) and urinary EO excretion (1.04 ± 0.13 nmol/day) were at steady state. On the 3rd day of a high-salt diet, urine sodium excretion (315 ± 28 meq/day), plasma EO (5.8 ± 2.2 nmol/l), and the urinary EO excretion (1.69 ± 0.27 nmol/day) were significantly increased, while plasma renin activity and aldosterone levels were suppressed. The salt-evoked increase in plasma EO was greater in older individuals, in subjects whose baseline circulating EO was higher, and in those with low renal clearance. During HCTZ, body weight decreased and plasma renin activity, aldosterone, and EO (1.71 ± 0.77 nmol/l) rose, while urinary EO excretion remained within the normal range (1.44 ± 0.31 nmol/day). Blood pressure fell in one subject during HCTZ. HPLC of the plasma extracts showed one primary peak of EO immunoreactivity with a retention time equivalent to ouabain. High-salt diets and HCTZ raise plasma EO by stimulating EO secretion, and a J-shaped curve relates sodium balance and EO in healthy men. Under normal dietary conditions, ∼98% of the filtered load of EO is reabsorbed by the kidney, and differences in the circulating levels of EO are strongly influenced by secretion and urinary excretion of EO. The dramatic impact of high-salt diets on plasma EO is consistent with its proposed role as a humoral vasoconstrictor that links salt intake with vascular function in hypertension.


1981 ◽  
Vol 241 (5) ◽  
pp. F517-F524 ◽  
Author(s):  
P. Chaumet-Riffaud ◽  
J. P. Oudinet ◽  
J. Sraer ◽  
C. Lajotte ◽  
R. Ardaillou

Prostaglandin (PG) E2 and F2 alpha synthesis by isolated glomeruli and papillary homogenates prepared from control, salt-loaded, and salt-depleted rats was measured in vitro with and without added arachidonic acid using specific radioimmunoassays. Glomeruli from salt-depleted rats synthesized less PGE2 and more PGF2 alpha than glomeruli from control rats under both conditions. The effect of sodium restriction could be attributed to stimulation of glomerular 9-keto-PGE2 reductase activity unrelated to a change in the concentration of this enzyme. High salt diet had no effect on PG synthesis by glomeruli. Papillary homogenates prepared from salt-loaded rats synthesized more PGE2 than those from control rats both with and without added arachidonic acid. This finding suggests an effect of high salt diet at a stage further than phospholipid deacylation. Low salt diet had no effect on PG synthesis by papillary homogenates. The physiological control of PG synthesis in response to changes in the NaCl content of the diet is, therefore, different for the glomeruli and the papilla.


2004 ◽  
Vol 287 (2) ◽  
pp. F224-F230 ◽  
Author(s):  
Marisela Varela ◽  
Marcela Herrera ◽  
Jeffrey L. Garvin

A high-salt diet enhances nitric oxide (NO)-induced inhibition of transport in the thick ascending limb (THAL). Long exposures to NO inhibit Na-K-ATPase in cultured cells. We hypothesized that NO inhibits THAL Na-K-ATPase after long exposures and a high-salt diet would augment this effect. Rats drank either tap water or 1% NaCl for 7–10 days. Na-K-ATPase activity was assessed by measuring ouabain-sensitive ATP hydrolysis by THAL suspensions. After 2 h, spermine NONOate (SPM; 5 μM) reduced Na-K-ATPase activity from 0.44 ± 0.03 to 0.30 ± 0.04 nmol Pi·μg protein−1·min−1 in THALs from rats on a normal diet ( P < 0.03). Nitroglycerin also reduced Na-K-ATPase activity ( P < 0.04). After 20 min, SPM had no effect (change −0.07 ± 0.05 nmol Pi·μg protein−1·min−1). When rats were fed high salt, SPM did not inhibit Na-K-ATPase after 120 min. To investigate whether ONOO− formed by NO reacting with O2− was involved, we measured O2− production. THALs from rats on normal and high salt produced 35.8 ± 0.3 and 23.7 ± 0.8 nmol O2−·min−1·mg protein−1, respectively ( P < 0.01). Because O2− production differed, we studied the effects of the O2− scavenger tempol. In the presence of 50 μM tempol, SPM did not inhibit Na-K-ATPase after 120 min (0.50 ± 0.05 vs. 0.52 ± 0.07 nmol Pi·μg protein−1·min−1). Propyl gallate, another O2− scavenger, also prevented SPM-induced inhibition of Na-K-ATPase activity. SPM inhibited pump activity in tubules from rats on high salt when O2− levels were increased with xanthine oxidase and hypoxanthine. We concluded that NO inhibits Na-K-ATPase after long exposures when rats are on a normal diet and this inhibition depends on O2−. NO donors do not inhibit Na-K-ATPase in THALs from rats on high salt due to decreased O2− production.


2021 ◽  
Vol 118 (12) ◽  
pp. e2025944118
Author(s):  
Shin-Young Na ◽  
Mathangi Janakiraman ◽  
Alexei Leliavski ◽  
Gurumoorthy Krishnamoorthy

Sodium chloride, “salt,” is an essential component of daily food and vitally contributes to the body’s homeostasis. However, excessive salt intake has often been held responsible for numerous health risks associated with the cardiovascular system and kidney. Recent reports linked a high-salt diet (HSD) to the exacerbation of artificially induced central nervous system (CNS) autoimmune pathology through changes in microbiota and enhanced TH17 cell differentiation [M. Kleinewietfeld et al., Nature 496, 518–522 (2013); C. Wu et al., Nature 496, 513–517 (2013); N. Wilck et al., Nature 551, 585–589 (2017)]. However, there is no evidence that dietary salt promotes or worsens a spontaneous autoimmune disease. Here we show that HSD suppresses autoimmune disease development in a mouse model of spontaneous CNS autoimmunity. We found that HSD consumption increased the circulating serum levels of the glucocorticoid hormone corticosterone. Corticosterone enhanced the expression of tight junction molecules on the brain endothelial cells and promoted the tightening of the blood–brain barrier (BBB) thereby controlling the entry of inflammatory T cells into the CNS. Our results demonstrate the multifaceted and potentially beneficial effects of moderately increased salt consumption in CNS autoimmunity.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6807
Author(s):  
Wei Liu ◽  
Danjuan Sui ◽  
Huanying Ye ◽  
Zhen Ouyang ◽  
Yuan Wei

Background Arachidonic acid (AA) is oxidized by cytochrome P450s (CYPs) to form epoxyeicosatrienoic acids (EETs), compounds that modulate ion transport, gene expression, and vasorelaxation. Both CYP2Cs and CYP2Js are involved in kidney EET epoxidation. Methods In this study, we used a CYP2C11-null rat model to explore the in vivo effects of CYP2C11 on vasorelaxation. For 2 months, CYP2C11-null and wild-type (WT) Sprague-Dawley rats were either fed normal lab (0.3% (w/w) sodium chloride) or high-salt (8% (w/w) sodium chloride) diets. Subsequently, an invasive method was used to determine blood pressure. Next, western blots, quantitative PCR, and immunohistochemistry were used to determine renal expression of CYPs involved in AA metabolism. Results Among CYP2C11-null rats, a high-salt diet (females: 156.79 ± 15.89 mm Hg, males: 130.25 ± 16.76 mm Hg, n = 10) resulted in significantly higher blood pressure than a normal diet (females: 118.05 ± 8.43 mm Hg, P < 0.01; males: 115.15 ± 11.45 mm Hg, P < 0.05, n = 10). Compared with WT rats under the high-salt diet, western blots showed that CYP2C11-null rats had higher renal expression of CYP2J2 and CYP4A. This was consistent with the results of immunohistochemistry and the qPCR, respectively. The two rat strains did not differ in the renal expression of CYP2C23 or CYP2C24. Conclusion Our findings suggested that CYP2C11 plays an important role in lowering blood pressure under the challenge of a high-salt diet.


Sign in / Sign up

Export Citation Format

Share Document