scholarly journals Functional Blockade of E-Selectin in Tumor-Associated Vessels Enhances Anti-Tumor Effect of Doxorubicin in Breast Cancer

Cancers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 725
Author(s):  
Yoshihiro Morita ◽  
Macall Leslie ◽  
Hiroyasu Kameyama ◽  
Ganesh L. R. Lokesh ◽  
Norihisa Ichimura ◽  
...  

Chemotherapy is a mainstay of treatment for solid tumors. However, little is known about how therapy-induced immune cell infiltration may affect therapy response. We found substantial CD45+ immune cell density adjacent to E-selectin expressing inflamed vessels in doxorubicin (DOX)-treated residual human breast tumors. While CD45 level was significantly elevated in DOX-treated wildtype mice, it remained unchanged in DOX-treated tumors from E-selectin null mice. Similarly, intravenous administration of anti-E-selectin aptamer (ESTA) resulted in a significant reduction in CD45+ immune cell density in DOX-treated residual tumors, which coincided with a delay in tumor growth and lung metastasis in MMTV-pyMT mice. Additionally, both tumor infiltrating T-lymphocytes and tumor associated-macrophages were skewed towards TH2 in DOX-treated residual breast tumors; however, ESTA suppressed these changes. This study suggests that DOX treatment instigates de novo intratumoral infiltration of immune cells through E-selectin, and functional blockade of E-selectin may reduce residual tumor burden as well as metastasis through suppression of TH2 shift.

2020 ◽  
Author(s):  
Jukun Song ◽  
Song He ◽  
Wei Wang ◽  
Jiaming Su ◽  
Dongbo Yuan ◽  
...  

Abstract Background Immune infiltration of Prostate cancer (PCa) was highly related to clinical outcomes. However, previous works failed to elucidate the diversity of different immune cell types that make up the function of the immune response system. The aim of the study was to uncover the composition of TIICs in PCa utilizing the CIBERSORT algorithm and further reveal the molecular characteristics of PCa subtypes. Method In the present work, we employed the CIBERSORT method to evaluate the relative proportions of immune cell profiling in PCa and adjacent samples, normal samples. We analyzed the correlation between immune cell infiltration and clinical information. The tumor-infiltrating immune cells of the TCGA PCa cohort were analyzed for the first time. The fractions of 22 immune cell types were imputed to determine the correlation between each immune cell subpopulation and clinical feature. Three types of molecular classification were identified via R-package of “CancerSubtypes”. The functional enrichment was analyzed in each subtype. The submap and TIDE algorithm were used to predict the clinical response to immune checkpoint blockade, and GDSC was employed to screen chemotherapeutic targets for the potential treatment of PCa. Results In current work, we utilized the CIBERSORT algorithm to assess the relative proportions of immune cell profiling in PCa and adjacent samples, normal samples. We investigated the correlation between immune cell infiltration and clinical data. The tumor-infiltrating immune cells in the TCGA PCa cohort were analyzed. The 22 immune cells were also calculated to determine the correlation between each immune cell subpopulation and survival and response to chemotherapy. Three types of molecular classification were identified. Each subtype has specific molecular and clinical characteristics. Meanwhile, Cluster I is defined as advanced PCa, and is more likely to respond to immunotherapy. Conclusions Our results demonstrated that differences in immune response may be important drivers of PCa progression and response to treatment. The deconvolution algorithm of gene expression microarray data by CIBERSOFT provides useful information about the immune cell composition of PCa patients. In addition, we have found a subtype of immunopositive PCa subtype and will help to explore the reasons for the poor effect of PCa on immunotherapy, and it is expected that immunotherapy will be used to guide the individualized management and treatment of PCa patients.


2021 ◽  
Vol 11 ◽  
Author(s):  
Young-Sil An ◽  
Se-Hyuk Kim ◽  
Tae Hoon Roh ◽  
So Hyun Park ◽  
Tae-Gyu Kim ◽  
...  

BackgroundThe purpose of this study was to investigate the correlation between 18F-fluorodeoxyglucose (FDG) uptake and infiltrating immune cells in metastatic brain lesions.MethodsThis retrospective study included 34 patients with metastatic brain lesions who underwent brain 18F-FDG positron emission tomography (PET)/computed tomography (CT) followed by surgery. 18F-FDG uptake ratio was calculated by dividing the standardized uptake value (SUV) of the metastatic brain lesion by the contralateral normal white matter uptake value. We investigated the clinicopathological characteristics of the patients and analyzed the correlation between 18F-FDG uptake and infiltration of various immune cells. In addition, we evaluated immune-expression levels of glucose transporter 1 (GLUT1), hexokinase 2 (HK2), and Ki-67 in metastatic brain lesions.ResultsThe degree of 18F-FDG uptake of metastatic brain lesions was not significantly correlated with clinical parameters. There was no significant relationship between the 18F-FDG uptake and degree of immune cell infiltration in brain metastasis. Furthermore, other markers, such as GLUT1, HK2, and Ki-67, were not correlated with degree of 18F-FDG uptake. In metastatic brain lesions that originated from breast cancer, a higher degree of 18F-FDG uptake was observed in those with high expression of CD68.ConclusionsIn metastatic brain lesions, the degree of 18F-FDG uptake was not significantly associated with infiltration of immune cells. The 18F-FDG uptake of metastatic brain lesions from breast cancer, however, might be associated with macrophage activity.


2021 ◽  
Author(s):  
Victoria Emily Barbosa Hipolito

Cells are exposed to diverse extracellular and intracellular cues, and coopt subcellular responses depending on their cellular state and functional demand; including upregulating signalling pathways or adapting organelle function and physiology. The immune system is a tightly regulated cohort of specialized cells with heterogeneous functions. Phagocytes, a type of immune cell, are challenged with disparate environmental stimuli and can adapt intracellularly to promote immunity. Due to their cellular plasticity, we aim to understand the molecular machinery that controls organelle identity and adaptation in immune cells, when challenged with immunostimulatory agents. First, we used a long tubular phagocytic cup, which provides the spatiotemporal resolution necessary to study the stages of phagocytosis. Using this model, we observed the sequential recruitment of early and late endolysosomal markers to the growing cup. Surprisingly, the early endosomal lipid, phosphatidylinositol-3-phosphate [PtdIns(3)P] persisted. We determined a novel pH-based mechanism that induces the dissociation of the Vps34 Class III phosphatidylinositol-3- kinase from tubular cups as they progressively acidify, when reaching 20 µm in length or upon phagosome closure. The detachment of Vps34 stops the production of PtdIns(3)P, allowing for its turnover by PIKfyve. Given that PtdIns(3)P dependent signalling is important for multiple cellular pathways, this mechanism for pH-dependent regulation of Vps34 could be at the center of many PtdIns(3)P-dependent cellular processes. Additionally, we examined how lysosomes, a kingpin organelle essential for pathogen killing, and antigen processing and presentation, adapt in response to phagocyte activation. During phagocyte activation, lysosomes are remodelled from dozens of globular structures to a tubular network, in a process that requires the PI3K-AKT-mTOR signalling pathway. We showed that lysosome tubulation is coupled with an increase in volume and holding capacity. Lysosome remodelling was dependent on de novo synthesis of lysosomal proteins, but independent of TFEB and TFE3 transcription factors, known to scale-up lysosome biogenesis. We demonstrate a novel mechanism of acute organelle expansion via mTORC1-S6K-4E-BP-dependent increase in lysosomal mRNA translation. This process was necessary for efficient and rapid antigen presentation to T-cells by dendritic cells (DCs). Moreover, lysosome remodelling was conserved in DCs activated with select adjuvants, additives used in vaccines to boost efficacy, providing evidence for its possible clinical applicability. Together, we have identified two novel mechanisms controlling organelle identity and adaptation in immune cells.


2021 ◽  
Author(s):  
Victoria Emily Barbosa Hipolito

Cells are exposed to diverse extracellular and intracellular cues, and coopt subcellular responses depending on their cellular state and functional demand; including upregulating signalling pathways or adapting organelle function and physiology. The immune system is a tightly regulated cohort of specialized cells with heterogeneous functions. Phagocytes, a type of immune cell, are challenged with disparate environmental stimuli and can adapt intracellularly to promote immunity. Due to their cellular plasticity, we aim to understand the molecular machinery that controls organelle identity and adaptation in immune cells, when challenged with immunostimulatory agents. First, we used a long tubular phagocytic cup, which provides the spatiotemporal resolution necessary to study the stages of phagocytosis. Using this model, we observed the sequential recruitment of early and late endolysosomal markers to the growing cup. Surprisingly, the early endosomal lipid, phosphatidylinositol-3-phosphate [PtdIns(3)P] persisted. We determined a novel pH-based mechanism that induces the dissociation of the Vps34 Class III phosphatidylinositol-3- kinase from tubular cups as they progressively acidify, when reaching 20 µm in length or upon phagosome closure. The detachment of Vps34 stops the production of PtdIns(3)P, allowing for its turnover by PIKfyve. Given that PtdIns(3)P dependent signalling is important for multiple cellular pathways, this mechanism for pH-dependent regulation of Vps34 could be at the center of many PtdIns(3)P-dependent cellular processes. Additionally, we examined how lysosomes, a kingpin organelle essential for pathogen killing, and antigen processing and presentation, adapt in response to phagocyte activation. During phagocyte activation, lysosomes are remodelled from dozens of globular structures to a tubular network, in a process that requires the PI3K-AKT-mTOR signalling pathway. We showed that lysosome tubulation is coupled with an increase in volume and holding capacity. Lysosome remodelling was dependent on de novo synthesis of lysosomal proteins, but independent of TFEB and TFE3 transcription factors, known to scale-up lysosome biogenesis. We demonstrate a novel mechanism of acute organelle expansion via mTORC1-S6K-4E-BP-dependent increase in lysosomal mRNA translation. This process was necessary for efficient and rapid antigen presentation to T-cells by dendritic cells (DCs). Moreover, lysosome remodelling was conserved in DCs activated with select adjuvants, additives used in vaccines to boost efficacy, providing evidence for its possible clinical applicability. Together, we have identified two novel mechanisms controlling organelle identity and adaptation in immune cells.


2021 ◽  
Author(s):  
Xiaoyan Li ◽  
Jing Zhou ◽  
Jie He

Abstract Background: Sarcoidosis (SA) is an immune disorder disease featured with granulomas formation. The work purposed to uncover potential markers for sarcoidosis (SA) diagnosis and explore how immune cell infiltration contributes to the pathogenesis of SA.Methods: Sarcoidosis GSE83456 samples and GSE42834 from Gene Expression Omnibus (GEO) were analyzed as the training and external validation sets, respectively. R statistical software was employed to uncover the differentially expressed genes (DEGs) of GSE83456. SVM algorithms and LASSO logistic regression were applied for screening and verification of the diagnostic markers for key module genes. The infiltration of immune cells in sarcoidosis patients’ blood samples was assessed by CIBERSORT. The expression of serum BATF2 and PDK4 was detected by RT-qPCR method, and the value of BATF2 and PDK4 mRNA expression in the diagnosis of pulmonary sarcoidosis was analyzed.Results: In total, 580 DEGs were identified from the key module. PDK4 (AUC=0.942) and BATF4 (AUC=0.980) were revealed as diagnostic markers of sarcoidosis. We found that monocytes, T cells regulatory (Tregs), mast cells, macrophages,NK cells, and dendritic cells may contribute to sarcoidosis development. In addition, PDK4 and BATF4 were closely associated with these immune cells. BATF2 and PDK4 were highly expressed in pulmonary sarcoidosis. BATF2 and PDK4 combined to predict the area under the ROC curve of pulmonary sarcoidosis was 0.922.Conclusions: PDK4 and BATF4 could be used as diagnostic markers of sarcoidosis, and immune cell infiltration severs an important role in sarcoidosis.


2019 ◽  
Vol 41 (5) ◽  
pp. 625-633 ◽  
Author(s):  
Beatrice M Razzo ◽  
Nils Ludwig ◽  
Chang-Sook Hong ◽  
Priyanka Sharma ◽  
Kellsye P Fabian ◽  
...  

Abstract Circulating tumor-derived exosomes (TEX) interact with a variety of cells in cancer-bearing hosts, leading to cellular reprogramming which promotes disease progression. To study TEX effects on the development of solid tumors, immunosuppressive exosomes carrying PD-L1 and FasL were isolated from supernatants of murine or human HNSCC cell lines. TEX were delivered (IV) to immunocompetent C57BL/6 mice bearing premalignant oral/esophageal lesions induced by the carcinogen, 4-nitroquinoline 1-oxide (4NQO). Progression of the premalignant oropharyngeal lesions to malignant tumors was monitored. A single TEX injection increased the number of developing tumors (6.2 versus 3.2 in control mice injected with phosphate-buffered saline; P < 0.0002) and overall tumor burden per mouse (P < 0.037). The numbers of CD4+ and CD8+ T lymphocytes infiltrating the developing tumors were coordinately reduced (P < 0.01) in mice injected with SCCVII-derived TEX relative to controls. Notably, TEX isolated from mouse or human tumors had similar effects on tumor development and immune cells. A single IV injection of TEX was sufficient to condition mice harboring premalignant OSCC lesions for accelerated tumor progression in concert with reduced immune cell migration to the tumor.


2014 ◽  
Vol 32 (3_suppl) ◽  
pp. 46-46
Author(s):  
Sophie Earle ◽  
Toru Aoyama ◽  
Alexander I. Wright ◽  
Darren Treanor ◽  
Yohei Miyagi ◽  
...  

46 Background: Since the ACTS-GC trial, Japanese patients with stage II/III gastric cancer (GC) receive adjuvant S1 chemotherapy. However, selection of patients (pts) by TNM stage does not predict benefit from adjuvant S1 with certainty. Thus, there is an urgent clinical need to identify predictive biomarkers. Increasing evidence suggests tumor immune cell infiltration may be related to GC pts prognosis. We tested the hypothesis that extent and type of immune cell infiltration in GC is related to benefit from adjuvant chemotherapy. Methods: Tissue microarrays from 252 GC resections (109 pts treated by surgery alone (S), 143 pts treated by surgery and adjuvant S1 chemotherapy (SC)) from the Kanagawa Cancer Center Hospital (Yokohama, Japan) were investigated by immunohistochemistry for common leucocytes antigen (CD45), neutrophils (CD66b), macrophages (CD68 and CD163), T-cell subtypes (CD45R0, CD8, CD3), B-cells (CD20) and Treg cells (FOXP3). Staining was quantified as percentage immunoreactivity/area by automated image analysis. Relationship with overall survival was analyzed. A Cox regression model was used to identify independent prognostic markers and treatment interaction effect. Results: The hazard ratio of S1 was 0.694 in this GC cohort which is similar to the results of the ACTS-GC trial. CD45 and CD45R0 were independent prognostic markers in the S group only (CD45 p=0.032, CD45R0 p=0.003). A treatment interaction effect was seen for CD45, CD45R0, and CD68 (p value for test of interaction: CD45 p=0.062, CD45R0 p=0.082, CD68 p=0.057). Survival in the SC group was significantly poorer compared to the S group for CD45>56% or CD68>7% (p<0.05). Conclusions: This is the first study to investigate the relationship between tumor immune cell infiltration at time of surgery and benefit from adjuvant chemotherapy. Our results indicate that GC patients with high intratumoral levels of CD68, CD45, or CD45R0 positive immune cells might not benefit from adjuvant S1 chemotherapy. These findings require validation in a second independent dataset before conducting a prospective study stratifying patients with stage II/III GC based upon extent of CD45, CD45R0, or CD68 immune cell infiltration for adjuvant treatment.


2018 ◽  
Vol 36 (5_suppl) ◽  
pp. 115-115
Author(s):  
Somjin Chindavijak ◽  
Michael Har-Noy ◽  
Wirote Lausoontornsiri

115 Background: Head and Neck Squamous Cell Carcinoma (HNSCC) is associated with multiple immune suppression and avoidance mechanisms . Blocking the PD-1 signal axis in second line provides a significant survival advantage compared to chemotherapy. However, checkpoint blockade efficacy is limited to the subset of patients that present with tumors highly infiltrated with effector immune cells. We investigated a novel vaccine designed to increase the infiltration of tumor-specific effector cells and counter-regulate the suppressive tumor microenvironment. Methods: Pre-treated r/m HNSCC patients with externally visible tumors were accrued. Tumor biopsy samples were processed at baseline to purify endogenous chaperones with calreticulin, hsp70, hsp90 and gr94/gp96 (CRCL) as a source of tumor neoantigen. Ex-vivo differentiated, allogeneic Th1 memory cells with CD3/CD28-coated microbeads attached (aTh1) expressing CD40L and IFN-gamma served as adjuvant. Subjects were primed with 4 weekly aTh1 ID injections to increase allo-specific Th1 memory titer. Primed subjects were provided 3 weekly ID injections of CRCL + aTh1 to increase tumor-specific Th1 memory titer followed by intravenous aTh1 in the 4th week to activate circulating memory cells through CD40-CD40L, causing their extravasation and trafficking to tumor lesions. Allo-rejection response produces a sustained Type 1 cytokine release which dys-regulates suppressor circuits. The ID/IV cycle was then repeated. Results: 10 subjects with recurrent or metastatic disease were accrued. All with prior radiochemotherapy. 50% (5/10) had clinical response with visible reduction in tumor burden. Vaccine was well tolerated. Debulking response correlated with increased CD3+ immune cell infiltration and decreased CTLA-4 expression. Conclusions: This individualized vaccine caused increased immune cell infiltration in tumors, down-regulation of CTLA4 and visible tumor debulking in a heavily pre-treated, chemotherapy-refractory population. These results provide rationale for further evaluation of this vaccine in a first-line setting with and without PD1/L1 blockade. Clinical trial information: NCT01998542.


2021 ◽  
Vol 2021 ◽  
pp. 1-24
Author(s):  
Qingli Quan ◽  
Xinxin Xiong ◽  
Shanyun Wu ◽  
Meixing Yu

Autophagy plays an important role in cancer. Many studies have demonstrated that autophagy-related genes (ARGs) can act as a prognostic signature for some cancers, but little has been known in low-grade gliomas (LGG). In our study, we aimed to establish a prognostical model based on ARGs and find prognostic risk-related key genes in LGG. In the present study, a prognostic signature was constructed based on a total of 8 ARGs (MAPK8IP1, EEF2, GRID2, BIRC5, DLC1, NAMPT, GRID1, and TP73). It was revealed that the higher the risk score, the worse was the prognosis. Time-dependent ROC analysis showed that the risk score could precisely predict the prognosis of LGG patients. Additionally, four key genes (TGFβ2, SERPING1, SERPINE1, and TIMP1) were identified and found significantly associated with OS of LGG patients. Besides, they were also discovered to be strongly related to six types of immune cells which infiltrated in LGG tumor. Taken together, the present study demonstrated the promising potential of the ARG risk score formula as an independent factor for LGG prediction. It also provided the autophagy-related signature of prognosis and potential therapeutic targets for the treatment of LGG.


Sign in / Sign up

Export Citation Format

Share Document