scholarly journals Paradoxical Role of AT-rich Interactive Domain 1A in Restraining Pancreatic Carcinogenesis

Cancers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2695
Author(s):  
Sammy Ferri-Borgogno ◽  
Sugata Barui ◽  
Amberly M. McGee ◽  
Tamara Griffiths ◽  
Pankaj K. Singh ◽  
...  

Background & Aims: ARID1A is postulated to be a tumor suppressor gene owing to loss-of-function mutations in human pancreatic ductal adenocarcinomas (PDAC). However, its role in pancreatic pathogenesis is not clear despite recent studies using genetically engineered mouse (GEM) models. We aimed at further understanding of its direct functional role in PDAC, using a combination of GEM model and PDAC cell lines. Methods: Pancreas-specific mutant Arid1a-driven GEM model (Ptf1a-Cre; KrasG12D; Arid1af/f or “KAC”) was generated by crossing Ptf1a-Cre; KrasG12D (“KC”) mice with Arid1af/f mice and characterized histologically with timed necropsies. Arid1a was also deleted using CRISPR-Cas9 system in established human and murine PDAC cell lines to study the immediate effects of Arid1a loss in isogenic models. Cell lines with or without Arid1a expression were developed from respective autochthonous PDAC GEM models, compared functionally using various culture assays, and subjected to RNA-sequencing for comparative gene expression analysis. DNA damage repair was analyzed in cultured cells using immunofluorescence and COMET assay. Results: Retention of Arid1a is critical for early progression of mutant Kras-driven pre-malignant lesions into PDAC, as evident by lower Ki-67 and higher apoptosis staining in “KAC” as compared to “KC” mice. Enforced deletion of Arid1a in established PDAC cell lines caused suppression of cellular growth and migration, accompanied by compromised DNA damage repair. Despite early development of relatively indolent cystic precursor lesions called intraductal papillary mucinous neoplasms (IPMNs), a subset of “KAC” mice developed aggressive PDAC in later ages. PDAC cells obtained from older autochthonous “KAC” mice revealed various compensatory (“escaper”) mechanisms to overcome the growth suppressive effects of Arid1a loss. Conclusions: Arid1a is an essential survival gene whose loss impairs cellular growth, and thus, its expression is critical during early stages of pancreatic tumorigenesis in mouse models. In tumors that arise in the setting of ARID1A loss, a multitude of “escaper” mechanisms drive progression.

2019 ◽  
Author(s):  
Sammy Ferri-Borgogno ◽  
Sugata Barui ◽  
Amberly McGee ◽  
Tamara Griffiths ◽  
Pankaj K Singh ◽  
...  

AbstractBackground & AimsARID1A is postulated to be a tumor suppressor gene owing to loss-of-function mutations in human pancreatic ductal adenocarcinomas (PDAC). However, its role in pancreatic pathogenesis is not clear despite recent studies using genetically engineered mouse (GEM) models. We aimed at further understanding of its direct functional role in PDAC, using a combination of GEM model, PDAC cell lines.MethodsPancreas-specific mutant Arid1a-driven GEM model (Ptf1a-Cre;KrasG12D;Arid1af/f or “KAC”) was generated by crossing Ptf1a-Cre;KrasG12D (“KC”) mice with Arid1af/f mice and characterized histologically with timed necropsies. Arid1a was also deleted using CRISPR-Cas9 system in established PDAC cell lines to study the immediate effects of Arid1a loss in isogenic models. Cells lines with or without Arid1a expression were developed from respective autochthonous PDAC GEM models, compared functionally using various culture assays, and subjected to RNA-sequencing for comparative gene expression analysis. DNA damage repair was analyzed in cultured cells using immunofluorescence and COMET assay.ResultsArid1a is critical for early progression of mutant Kras-driven pre-malignant lesions into PDAC, as evident by lower Ki-67 and higher apoptosis staining in “KAC” as compared to “KC” mice. Enforced deletion of Arid1a in established PDAC cell lines caused suppression of cellular growth and migration, accompanied by compromised DNA damage repair. Despite early development of relatively indolent cystic precursor lesions called intraductal papillary mucinous neoplasms (IPMNs), a subset of “KAC” mice developed aggressive PDAC in later ages. PDAC cells obtained from older autochthonous “KAC” mice revealed epigenetic changes underlying the various compensatory mechanisms to overcome the growth suppressive effects of Arid1a loss.ConclusionsArid1a is an essential survival gene whose loss impairs cellular growth, and thus, its expression is critical during early stages of pancreatic tumorigenesis in mouse models.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Chaofan Xie ◽  
Wei Xiang ◽  
Huiyong Shen ◽  
Jingnan Shen

Abstract Background G2 and S phase-expressed-1 (GTSE1) negatively regulates the tumor-suppressive protein p53 and is potentially correlated with chemoresistance of cancer cells. This study aims to explore the effect of GTSE1 on the DNA damage repair and cisplatin (CDDP) resistance in osteosarcoma (OS). Materials and methods Expression of GTSE1 in OS was predicted in bioinformatics system GEPIA and then validated in clinically obtained tissues and acquired cell lines using RT-qPCR, immunohistochemical staining, and western blot assays. Gain- and loss-of-function studies of GTSE1 were performed in MG-63 and 143B cells to examine its function in cell cycle progression, DNA replication, and CDDP resistance. Stably transfected MG-63 cells were administrated into mice, followed by CDDP treatment to detect the role of GTSE1 in CDDP resistance in vivo. Results GTSE1 was highly expressed in patients with OS and correlated with poor survival according to the bioinformatics predictions. Elevated GTSE1 expression was detected in OS tissues and cell lines. GTSE1 silencing reduced S/G2 transition and DNA replication, and it increased the CDDP sensitivity and decreased the expression of DNA repair-related biomarkers in MG-63 cells. GTSE1 overexpression in 143B cells led to inverse trends. In vivo, downregulation of GTSE1 strengthened the treating effect of CDDP and significantly repressed growth of xenograft tumors in nude mice. However, overexpression of GTSE1 blocked the anti-tumor effect of CDDP. Conclusion This study demonstrates that GTSE1 is possibly involved in the DNA damage repair and cisplatin resistance in OS.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e15640-e15640
Author(s):  
Ruby Yun-Ju Huang ◽  
Xun Hui Yeo ◽  
Wai Leong Tam

e15640 Background: AXL is a receptor tyrosine kinase that is often overexpressed in many cancers. It contributes to tumor progression, metastasis and drug resistance through activating downstream signaling cascades, making it an emerging therapeutic target. The first-in-class AXL inhibitor R428 (BGB321) was approved by the FDA for the treatment of relapsed or refractory acute myeloid leukemia. R428 (BGB321) was also reported to show selective sensitivity towards ovarian cancers (OC) with a Mesenchymal (Mes) molecular subtype. Recently, a novel role of AXL in the regulation of DNA damage responses has been described. In this study, we explored further the role of AXL in mediating DNA damage responses by using OC as a disease model. Methods: OC cell lines were treated with R428. Accumulation of γH2AX positive foci was assessed for DNA damage response. Western blotting for γH2AX, ATM and ATR levels were performed. Dose response curves of ATR inhibitors were generated by treating OC cells with the fixed dose of R428 (IC20 concentration of each cell line). Results: AXL inhibition by using R428 resulted in the increase of DNA damage foci in Mes OC cells SKOV3 and HeyA8. This occurred concurrently with the up-regulation of classic DNA damage response signaling molecules such as γH2AX, ATM and ATR. The IC50 of the ATR inhibitor significantly decreased for 2-3 folds in all OC cell lines tested. AXL inhibitor R428 sensitized both BRCA-mutated and non-BRCA-mutated OC cells to a potent and highly selective ATR inhibitor. Conclusions: Our results showed that AXL inhibition rendered cells more sensitive to the inhibition of ATR, a crucial mediator for replication stress, paving ways to the rationale for potential combinatory use of AXL and DNA damage repair inhibitors.


2021 ◽  
Author(s):  
Benedikt Linder ◽  
Johanna Ertl ◽  
Ömer Güllülü ◽  
Stephanie Hehlgans ◽  
Franz Rödel ◽  
...  

2015 ◽  
Vol 46 (6) ◽  
pp. 2299-2308 ◽  
Author(s):  
LAURA ANNOVAZZI ◽  
VALENTINA CALDERA ◽  
MARTA MELLAI ◽  
CHIARA RIGANTI ◽  
LUIGI BATTAGLIA ◽  
...  

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1487-1487
Author(s):  
Tatjana Meyer ◽  
Nikolaus Jahn ◽  
Anna Dolnik ◽  
Peter Paschka ◽  
Verena I. Gaidzik ◽  
...  

Abstract Introduction BRCA1/BRCA2-containing complex 3 (BRCC36) is a Lys63-specific deubiquitinating enzyme (DUB) involved in DNA damage repair. Mutations in BRCC36 have been identified in 2-3% of patients with myelodysplastic syndromes (MDS) and secondary AML (sAML). The role of BRCC36 mutations in de novo AML and their impact on DNA damage-inducing cytotoxic chemotherapy sensitivity is not clear. Aim We aimed to determine the incidence of BRCC36 mutations in AML and their impact on outcome and drug sensitivity in vitro. Methods We analyzed the entire coding region of BRCC36 for mutations in 191 AML cases with t(8;21) (q22;q22.1) and 95 cases with inv(16) (p13.1q22) using a customized targeted sequencing panel. Data for de novo AML was derived from The Cancer Genome Atlas Research Network (TCGA) data set (NEJM 2013). Lentiviral CRISPR/Cas9 was used to inactivate BRCC36 in t(8;21)-positive AML cell lines - Kasumi-1 and SKNO-1 - and murine hematopoietic stem and progenitor cells (LSKs). Knockout was confirmed by a cleavage assay as well as Western blot. AML1-ETO-9a was expressed by a retroviral vector. Cell lines and LSK cells were treated with different concentrations of doxorubicin or cytarabine and their viability was assessed seven days post treatment. DNA damage was assessed through phospho-γH2AX staining using flow-cytometry. Results BRCC36 mutations were identified in 7 out of 191 patients (3.7%) with t(8;21) AML and none of 95 patients with inv(16). In the TCGA data set one out of 200 patients (0.5%) with de novo AML had a BRCC36 mutation. This patient had a complex karyotype and would be considered as secondary AML with myelodysplastic-associated changes according to the 2016 WHO classification. Six of the 7 mutations were missense or nonsense mutations that were predicted to be deleterious to BRCC36 function. One mutation affected a splice site at exon 6, resulting in an impaired splicing capability. With intensive standard chemotherapy all patients with BRCC36 mutations achieved a complete remission and had an estimated relapse-free and overall survival of 100% after a median follow up of 4.2 years. Given its role in DNA damage repair, we hypothesized that BRCC36 inactivation sensitizes AML cells to DNA-damage inducing drugs. In order to test this, we generated BRCC36 knockout Kasumi-1 and SKNO-1 cell lines using CRISPR-Cas9. BRCC36 inactivation had no impact on cell growth on either of the cell lines. However, we found that BRCC36 knockout cells were significantly more sensitive to doxorubicin as compared to the parental cells with normal BRCC36. This was accompanied by a significant increase in DNA damage as assessed by phospho-γH2AX in BRCC36 knockout vs control cells after doxorubicin treatment. In contrast, BRCC36 inactivation had no impact on cytarabine sensitivity. We next assessed drug sensitivity in primary murine leukemic cells expressing AML1-ETO-9a. Again, inactivation of BRCC36 resulted in a significant higher sensitivity to doxorubicin but not cytarabine. Conclusion We found BRCC36 to be recurrently mutated in t(8;21)-positive AML Inactivation of BRCC36 was associated with impairment of the DNA damage repair pathway and thus higher sensitivity to DNA damage-inducing chemotherapy. This might be also reflected by the favorable clinical outcome of patients with BRCC36 mutated t(8;21)-positive AML, a finding which has to be confirmed in a large patient cohort. Disclosures Paschka: Pfizer: Membership on an entity's Board of Directors or advisory committees; Takeda: Other: Travel support; Novartis: Membership on an entity's Board of Directors or advisory committees, Other: Travel support, Speakers Bureau; Otsuka: Membership on an entity's Board of Directors or advisory committees; Sunesis: Membership on an entity's Board of Directors or advisory committees; Jazz: Speakers Bureau; Amgen: Other: Travel support; Janssen: Other: Travel support; Bristol-Meyers Squibb: Other: Travel support, Speakers Bureau; Celgene: Membership on an entity's Board of Directors or advisory committees, Other: Travel support, Speakers Bureau; Astellas: Membership on an entity's Board of Directors or advisory committees, Travel support; Astex: Membership on an entity's Board of Directors or advisory committees; Agios: Membership on an entity's Board of Directors or advisory committees. Bullinger:Jazz Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Pfizer: Speakers Bureau; Bayer Oncology: Research Funding; Sanofi: Research Funding, Speakers Bureau; Janssen: Speakers Bureau; Bristol-Myers Squibb: Speakers Bureau; Amgen: Honoraria, Speakers Bureau; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Döhner:Novartis: Consultancy, Honoraria, Research Funding; Jazz: Consultancy, Honoraria; Jazz: Consultancy, Honoraria; AROG Pharmaceuticals: Research Funding; Janssen: Consultancy, Honoraria; Celator: Consultancy, Honoraria; Pfizer: Research Funding; Celgene: Consultancy, Honoraria, Research Funding; Astex Pharmaceuticals: Consultancy, Honoraria; AROG Pharmaceuticals: Research Funding; Janssen: Consultancy, Honoraria; Seattle Genetics: Consultancy, Honoraria; Sunesis: Consultancy, Honoraria, Research Funding; Astellas: Consultancy, Honoraria; Astex Pharmaceuticals: Consultancy, Honoraria; Bristol Myers Squibb: Research Funding; Pfizer: Research Funding; Agios: Consultancy, Honoraria; Novartis: Consultancy, Honoraria, Research Funding; AbbVie: Consultancy, Honoraria; Amgen: Consultancy, Honoraria; Amgen: Consultancy, Honoraria; Agios: Consultancy, Honoraria; AbbVie: Consultancy, Honoraria; Celator: Consultancy, Honoraria; Astellas: Consultancy, Honoraria; Bristol Myers Squibb: Research Funding; Seattle Genetics: Consultancy, Honoraria; Celgene: Consultancy, Honoraria, Research Funding; Sunesis: Consultancy, Honoraria, Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2812-2812
Author(s):  
Clare Crean ◽  
Kienan I Savage ◽  
Ken I Mills

Abstract Acute Myeloid Leukemia (AML) is most commonly seen in people over the age of 65 and has a median age of 63. Globally there is an increasingly elderly population so the rate of incidence of AML is set to increase. The therapy landscape for AML has changed little over the past four decades. Cytarabine, first approved in 1969, is still the standard of care induction therapy for AML. There has been only modest improvements in survival rates during this time and there is currently no method of determining which patients will or will not respond to Cytarabine treatment. An assay, developed in 2014, used microarray data to determine which breast cancer patients had a DNA Damage Repair Deficiency (DDRD) and therefore would be more susceptible to DNA damaging agents. A negative DDRD (DDRD-) score predicts that patients do not to have a DNA Repair Deficiency whilst patients with a positive DDRD (DDRD+) score are predicted to have a DNA Repair Deficiency. This assay has been adapted to different solid cancer types such as ovarian and oesophageal cancer. This project has assessed the potential of using the DDRD assay for AML patients. The assay was applied to publically available microarray data of >600 AML patients (TCGA AML data &GSE6891), who were classed as DDRD- or DDRD+. Excluding patients not treated with Cytarabine, this left 639 patients, 405 DDRD+ and 234 DDRD-. Kaplan Meier analysis showed the DDRD+ patients survived significantly (p=0.00047) worse than the DDRD- cohort. Whole exome sequencing was available for 183 patients (131 DDRD+) and the mutations associated with each group were identified. As the DDRD+ patients had the worst outcome, we focused on group. The list of genes more commonly mutated in the DDRD+ patients (>2 instances and >50% occurring in this group) were subjected to pathway analysis. Deregulated pathways included "leukemogenisis" and "cell proliferation and regulation"; however, the most deregulated pathway was "metabolism of nucleobase containing compounds". As Cytarabine is a nucleobase-containing compound, this is potentially a contributing factor as to why these patients responded poorly to this treatment. The assay was applied to microarray data of a panel of myeloid cell lines, and DDRD-(NB4 & SKM1) and a DDRD+(HL-60) cell line were chosen as experimental models. Clonogenic assays, used to analyse the effect of Cytarabine on these cell lines, showed that the DDRD- cell lines were more sensitive with a lower colony growth rate than the DDRD+cell line. DNA damage induction and repair, following cytarabine treatment or 2gy radiation, were measured using RAD51 foci counts. Whilst foci counts were high in all cell lines 2hrs and 4hrs following radiation, the DDRD+ cell line continued to show high levels after 24hrs whereas the levels in the DDRD- cell lines returned to a basal level. RAD51 response to radiation treatment showed that a repair defect is present in DDRD+ cells as they fail to repair the damage induced by radiation. Following treatment with Cytarabine however, few foci were seen in the DDRD+ cell line 2hrs, 4hrs or 24hrs following treatment whereas the DDRD- cell lines responded in a similar fashion to radiation treatment. That RAD51 foci are not present following Cytarabine treatment indicates that Cytarabine fails to induce damage in these cells. The DDRD assay has shown to be an effective method for determining cellular response to Cytarabine in vivo. The non-response of the DDRD+ cell line to Cytarabine suggests that these cells do not elicit a DNA damage or an apoptotic response. This perhaps contributes to their poorer outcome and suggests that Cytarabine is not an effective treatment plan for patients deemed to be DDRD+. Although alternative induction treatment options are currently unavailable for DDRD+ AML patients, this DDRD assay could be used as a biomarker for Cytarabine response in the future. Disclosures No relevant conflicts of interest to declare.


DNA Repair ◽  
2018 ◽  
Vol 72 ◽  
pp. 1-9 ◽  
Author(s):  
Eleonora Juarez ◽  
Nyasha Chambwe ◽  
Weiliang Tang ◽  
Asia D. Mitchell ◽  
Nichole Owen ◽  
...  

Author(s):  
Jojanneke Stoof ◽  
Emily Harrold ◽  
Sarah Mariottino ◽  
Maeve A. Lowery ◽  
Naomi Walsh

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers worldwide, and survival rates have barely improved in decades. In the era of precision medicine, treatment strategies tailored to disease mutations have revolutionized cancer therapy. Next generation sequencing has found that up to a third of all PDAC tumors contain deleterious mutations in DNA damage repair (DDR) genes, highlighting the importance of these genes in PDAC. The mechanisms by which DDR gene mutations promote tumorigenesis, therapeutic response, and subsequent resistance are still not fully understood. Therefore, an opportunity exists to elucidate these processes and to uncover relevant therapeutic drug combinations and strategies to target DDR deficiency in PDAC. However, a constraint to preclinical research is due to limitations in appropriate laboratory experimental models. Models that effectively recapitulate their original cancer tend to provide high levels of predictivity and effective translation of preclinical findings to the clinic. In this review, we outline the occurrence and role of DDR deficiency in PDAC and provide an overview of clinical trials that target these pathways and the preclinical models such as 2D cell lines, 3D organoids and mouse models [genetically engineered mouse model (GEMM), and patient-derived xenograft (PDX)] used in PDAC DDR deficiency research.


Sign in / Sign up

Export Citation Format

Share Document