scholarly journals CTLA-4 in Regulatory T Cells for Cancer Immunotherapy

Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1440
Author(s):  
Navid Sobhani ◽  
Dana Rae Tardiel-Cyril ◽  
Aram Davtyan ◽  
Daniele Generali ◽  
Raheleh Roudi ◽  
...  

Immune checkpoint inhibitors (ICIs) have obtained durable responses in many cancers, making it possible to foresee their potential in improving the health of cancer patients. However, immunotherapies are currently limited to a minority of patients and there is a need to develop a better understanding of the basic molecular mechanisms and functions of pivotal immune regulatory molecules. Immune checkpoint cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and regulatory T (Treg) cells play pivotal roles in hindering the anticancer immunity. Treg cells suppress antigen-presenting cells (APCs) by depleting immune stimulating cytokines, producing immunosuppressive cytokines and constitutively expressing CTLA-4. CTLA-4 molecules bind to CD80 and CD86 with a higher affinity than CD28 and act as competitive inhibitors of CD28 in APCs. The purpose of this review is to summarize state-of-the-art understanding of the molecular mechanisms underlining CTLA-4 immune regulation and the correlation of the ICI response with CTLA-4 expression in Treg cells from preclinical and clinical studies for possibly improving CTLA-4-based immunotherapies, while highlighting the knowledge gap.

Author(s):  
Navid Sobhani ◽  
Dana Rae Tardiel-Cyril ◽  
Aram Davtyan ◽  
Daniele Generali ◽  
Raheleh Roudi ◽  
...  

Immune checkpoint inhibitors (ICIs) have obtained durable responses in many cancers, making it possible to foresee their potential in improving the health of cancer patients. However, immunotherapies are limited at the moment to a minority of patients and there is a need for a better understanding of the basic molecular mechanisms and functions of pivotal immune regulatory molecules. Immune checkpoint cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and regulatory T (Treg) cells play pivotal roles in hindering the anticancer immunity. Treg cells suppress antigen-presenting cells (APCs) by depleting immune stimulating cytokines, producing immunosuppressive cytokines and constitutively expressing CTLA-4. CTLA-4 molecules bind with higher affinity to CD80 and CD86 than CD28 and act as competitive inhibitors of CD28 in APCs. The purpose of this review is to summarize state-of-the-art understanding of the molecular mechanisms underlining CTLA-4 immune regulation and the correlation of ICI response with CTLA-4 expression in Treg cells from preclinical and clinical studies for possibly improving CTLA-4-based immunotherapies, while highlighting the knowledge gap.


Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1949
Author(s):  
Yawen Dong ◽  
Jeffrey Sum Lung Wong ◽  
Ryohichi Sugimura ◽  
Ka-On Lam ◽  
Bryan Li ◽  
...  

Advanced, unresectable hepatocellular carcinoma has a dismal outcome. Multiple immune checkpoint inhibitors (ICIs) targeting the programmed-cell death 1 pathway (PD-1/L1) have been approved for the treatment of advanced HCC. However, outcomes remain undesirable and unpredictable on a patient-to-patient basis. The combination of anti-PD-1/L1 with alternative agents, chiefly cytotoxic T-lymphocyte antigen-4 (CTLA-4) ICIs or agents targeting other oncogenic pathways such as the vascular endothelial growth factor (VEGF) pathway and the c-MET pathway, has, in addition to the benefit of directly targeting alterative oncogenic pathways, in vitro evidence of synergism through altering the genomic and function signatures of T cells and expression of immune checkpoints. Several trials have been completed or are underway evaluating such combinations. Finally, studies utilizing transcriptomics and organoids are underway to establish biomarkers to predict ICI response. This review aims to discuss the biological rationale and clinical advances in ICI-based combinations in HCCs, as well as the progress and prospects of the search for the aforementioned biomarkers in ICI treatment of HCC.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Rulan Ma ◽  
Quanziang Wang ◽  
Deyu Meng ◽  
Kang Li ◽  
Yong Zhang

Abstract Background Immune checkpoint inhibitors-induced myocarditis presents unique clinical challenges. Here, we assessed post-marketing safety of cytotoxic T-lymphocyte-associated protein-4 (CTLA-4), programmed cell death-1 (PD-1), and programmed death-ligand 1 (PD-L1) inhibitors by mining the real-world data reported in two international pharmacovigilance databases. Methods We analyzed immune checkpoint inhibitors (ICIs)-associated fatal adverse drug events (ADEs) reports from the US Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS) collected from July 1, 2014 to December 31, 2019 and data from EudraVigilance (EV) database accessed on February 29, 2020. Three different data mining approaches were used to detect the signal of fatal myocarditis caused by ICIs. Results Based on 7613 ICIs-related ADEs reported to the EV database and 5786 ICIs-associated ADEs submitted to the FAERS database, the most frequently reported ADE was ipilimumab-related colitis. For myocarditis, nivolumab-associated myocarditis was the most common. Among the five fatal toxic effects associated with ICIs, the lethality rate of myocarditis was the highest. Therefore, we further analyzed ICI-associated myocarditis and found that elderly patients and male patients were more likely to develop ICIs-related myocarditis. The results of signal detection showed that the risk signal of avelumab-related myocarditis detected by reporting odds ratio (ROR) method and proportional reporting ratios (PRR) method was the highest, whereas the signal strength of ipilimumab-related myocarditis detected by Bayesian confidence propagation neural networks (BCPNN) method was the strongest. Conclusion The findings of this study indicated the potential safety issues of developing myocarditis when using ICIs, which were consistent with the results of previous clinical trials and could provide a reference for clinical workers when using ICIs.


2020 ◽  
Vol 22 (1) ◽  
pp. 190
Author(s):  
Fulvio Borella ◽  
Mario Preti ◽  
Luca Bertero ◽  
Giammarco Collemi ◽  
Isabella Castellano ◽  
...  

Vulvar cancer (VC) is a rare neoplasm, usually arising in postmenopausal women, although human papilloma virus (HPV)-associated VC usually develop in younger women. Incidences of VCs are rising in many countries. Surgery is the cornerstone of early-stage VC management, whereas therapies for advanced VC are multimodal and not standardized, combining chemotherapy and radiotherapy to avoid exenterative surgery. Randomized controlled trials (RCTs) are scarce due to the rarity of the disease and prognosis has not improved. Hence, new therapies are needed to improve the outcomes of these patients. In recent years, improved knowledge regarding the crosstalk between neoplastic and tumor cells has allowed researchers to develop a novel therapeutic approach exploiting these molecular interactions. Both the innate and adaptive immune systems play a key role in anti-tumor immunesurveillance. Immune checkpoint inhibitors (ICIs) have demonstrated efficacy in multiple tumor types, improving survival rates and disease outcomes. In some gynecologic cancers (e.g., cervical cancer), many studies are showing promising results and a growing interest is emerging about the potential use of ICIs in VC. The aim of this manuscript is to summarize the latest developments in the field of VC immunoncology, to present the role of state-of-the-art ICIs in VC management and to discuss new potential immunotherapeutic approaches.


2021 ◽  
Author(s):  
Ari Kassardjian ◽  
Neda Moatamed

Abstract Introduction: Immune checkpoint inhibitors in cancer therapy has a significant role in oncology. One of these immune checkpoint mediators is cytotoxic T-lymphocyte associated protein 4 (CTLA-4). Inhibition of the CTLA-4 pathway has already led to the FDA approval of Ipilimumab (anti-CTLA-4), a targeted therapy for melanoma and other malignancies. CD137 is an inducible, costimulatory receptor of the tissue necrosis factor receptor superfamily expressed on activated immune cells. Clinical trials had also been set for anti-CD137 in several malignancies. We investigated the expression of CTLA-4 and CD137 antibodies in benign and malignant uterine cervical tissues. Method: We assessed CTLA-4 and CD137 expression on a tissue microarray (TMA) comprising of 100 normal, non-neoplastic, and neoplastic cervical tissues. When detected as strong granular cytoplasmic reaction in the epithelial cells, CTLA-4 expression was scored as positive. For CD137, the results were recorded based on the presence or absence of staining reaction on the cell membranes of the lymphoplasmacytic infiltrate. Result: Overall, CTLA-4 was positive in 30% (30/100) of the cervical malignancies. Subcategorically, 20% of invasive endocervical adenocarcinomas, 62.5% of adenosquamous carcinomas, and 31% of squamous cell carcinomas were positive for CTLA-4 with a tendency toward lower grades SCCs. CD137 was positive in lymphoplasmacytic infiltrates of all endocervical adenocarcinomas, 90.5% of squamous cell carcinoma, and 87.5% cores of adenosquamous carcinomas. Conclusion: This study has found a significant expression of CTLA-4 in cervical cancer cells and CD137 positivity of lymphoplasmacytic infiltrates with potentials for future targeted immunotherapy.


Author(s):  
Barbara Barnes Rogers, CRNP, MN, AOCN, ANP-BC ◽  
Carolyn Zawislak, MPAS, PA-C ◽  
Victoria Wong, PA-C

Immune checkpoint inhibitors target suppressor receptors, including cytotoxic T-lymphocyte–associated antigen 4 (CTLA-4), programmed cell death protein 1 (PD-1), and programmed cell death ligand 1 (PD-L1). The activated T cells are not antigen specific; therefore, the blockade of the immune checkpoint may result in the development of autoimmune adverse events. The most common immune-related adverse events (irAEs) are rash, colitis, and endocrinopathies. However, irAEs that affect the hematologic system are rare and can affect red blood cells (e.g., autoimmune hemolytic anemia), white blood cells, and platelets (e.g., immune thrombocytopenia). Usually one cell line is affected; however, in some cases, multiple cell lines can be affected. Other changes in the hematologic system can also be affected (e.g., cryoglobulinemia, cytokine release syndrome). Due to the rarity and lack of recognition of these AEs, the timing, spectrum of events, and clinical presentation are poorly understood. Management of hematologic irAEs usually involves the use of steroids; however, other agents (e.g., IVIG, cyclosporine, rituximab) or procedures (e.g., plasma exchange, transfusions) can also be used.


2020 ◽  
Author(s):  
Matthew E. Griffin ◽  
Juliel Espinosa ◽  
Jessica L. Becker ◽  
Jyoti K. Jha ◽  
Gary R. Fanger ◽  
...  

AbstractThe antitumor efficacy of cancer immunotherapy has been correlated with specific species within the gut microbiota. However, molecular mechanisms by which these microbes affect host response to immunotherapy remain elusive. Here we show that specific members of the bacterial genus Enterococcus can promote anti-PD-L1 immunotherapy in mouse tumor models. The active enterococci express and secrete orthologs of the NlpC/p60 peptidoglycan hydrolase SagA that generate immune-active muropeptides. Expression of SagA in non-protective E. faecalis was sufficient to promote antitumor activity of clinically approved checkpoint targets, and its activity required the peptidoglycan sensor Nod2. Notably, SagA-engineered probiotics or synthetic muropeptides also promoted checkpoint inhibitor antitumor activity. Our data suggest that microbiota species with unique peptidoglycan remodeling activity may enhance immunotherapy and could be leveraged for next-generation adjuvants.One Sentence SummaryA conserved family of secreted NlpC/p60 peptidoglycan hydrolases from Enterococcus promote antitumor activity of immune checkpoint inhibitors.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A110-A111
Author(s):  
Michael Salim ◽  
Wafa Dawahir ◽  
Janice L Gilden ◽  
Andriy Havrylyan

Abstract Background: Immune checkpoint inhibitors (ICIs) are novel immunotherapy agents that have been used to treat multiple advanced cancer. Even though they confer potential clinical advantages by regulating immune reactions, they have been linked with serious immune-mediated adverse events. Here we present a case of a patient who was treated with ICIs, Nivolumab (programmed death-1 inhibitor) and Ipilimumab (cytotoxic T lymphocyte antigen-4 inhibitor), and subsequently developed two concurrent immune-related endocrine disorders. Clinical Case: An 83-year-old man with advanced renal cell carcinoma presented with generalized weakness. He had finished four cycles of immunotherapy with Nivolumab and Ipilimumab, and Ipilimumab was discontinued afterward. Two days after the fifth cycle of immunotherapy with Nivolumab, he developed worsening fatigue, nausea, and anorexia. He appeared mildly volume depleted with borderline hypotensive (104/63 mmHg). The rest of the physical exam was unremarkable. Initial tests showed elevated levels of TSH (13.15 uIU/mL, ref 0.45–5.33 uIU/L), reduced levels of free T4 (<0.25 ng/dL, ref 0.58–1.64 ng/dL), free T3 (1.72 pg/mL, ref 2.5–3.9 pg/mL), negative thyroglobulin antibody, and elevated levels of thyroid peroxidase antibody (429 IU/mL, ref <9 IU/mL), thus suggesting primary hypothyroidism. Serum levels of sodium and potassium were unremarkable (136 meQ/L, ref 136–145 mEq/L; 3.6 meQ/L, ref 3.5–5.1 meQ/L respectively). His baseline TSH was normal three months prior to arrival (1.31 uIU/mL) and suppressed one month prior to arrival (0.01 uIU/mL). Immune-related thyroiditis with immune checkpoint inhibitors was suspected. He was given levothyroxine and observed in the hospital. After two days of hospitalization, weakness had slightly improved. However, he still had persistent nausea. He also developed low blood pressure (90/47 mmHg) and mild hyponatremia (133 mEq/L) with a normal potassium level. Further investigation showed low cortisol (1.0 ug/dL, ref 5.0–21.0), low ACTH (13 pg/mL, ref 6–50 pg/mL), cortisol level at 30 and 60 minutes post-cosyntropin stimulation test of 10.8 ug/dL (ref 13.0–30.0 ug/dL) and 14.8 ug/dL (ref 14.0–36.0 ug/dL) respectively, and negative adrenal antibodies, suggesting of secondary adrenal insufficiency due to hypophysitis. The patient was started on hydrocortisone, and his symptoms improved afterward. Conclusion: This case report highlights the common pitfall of managing immune-related endocrine disorders of ICIs. Adrenal insufficiency may present with a broad range of nonspecific symptoms, which could be attributed to hypothyroidism, underlying illness, or medications. Although a rare adverse effect, it is prudent to recognize adrenal insufficiency superimposed on primary hypothyroidism. Introducing thyroxine before replacing glucocorticoids can lead to an adrenal crisis.


2020 ◽  
Author(s):  
Rulan Ma ◽  
Quanziang Wang ◽  
Deyu Meng ◽  
Kang Li ◽  
yong zhang

Abstract Background: Immune checkpoint inhibitors induced myocarditis presents unique clinical challenges. Here, we assessed post-marketing safety of cytotoxic T-lymphocyte-associated protein-4 (CTLA-4), programmed cell death-1 (PD-1), and programmed death-ligand 1 (PD-L1) inhibitors by mining the real-world data reported in two international pharmacovigilance databases. Methods: We analyzed immune checkpoint inhibitors (ICIs)-associated fatal adverse drug events (ADRs) reports from the US Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS) collected from July 1, 2014 to December 31, 2019 and data from EudraVigilance (EV) database accessed on February 29, 2020. Three different data mining approaches were used to detect the signal of fatal myocarditis caused by ICIs. Results: Based on 7613 ICIs-related ADEs reported to the EV database and 5786 ICIs-associated ADEs submitted to the FAERS database, the most frequently reported ADE was ipilimumab-related colitis. For myocarditis, nivolumab-associated myocarditis was the most common. Among the five fatal toxic effects associated with ICIs, the lethality rate of myocarditis was the highest. Therefore, we further analyzed ICI-associated myocarditis and found that elderly patients and male patients were more likely to develop ICIs-related myocarditis. The results of signal detection showed that the risk signal of avelumab-related myocarditis detected by reporting odds ratio (ROR) method and proportional reporting ratios (PRR) method was the highest, whereas the signal strength of ipilimumab-related myocarditis detected by Bayesian confidence propagation neural networks (BCNPP) method was the strongest. Conclusion: The findings of this study indicated the potential safety issues of developing myocarditis when using ICIs, which are consistent with the results of previous clinical trials and can provide a reference for clinical workers when using ICIs.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e21552-e21552
Author(s):  
Yu Chen ◽  
Liu Jun ◽  
Jing Lin ◽  
Xuefeng Wang ◽  
Xiao-bin Zheng ◽  
...  

e21552 Background: Melanoma is generally regarded as an immunogenic type of tumor that will respond to immune checkpoint therapy. However, melanoma tumors with CCND1 amplification respond poorly to checkpoint therapy. Further understanding of how CCND1 amplification modifies the effect of checkpoint therapy is necessary to design future clinical trials. Methods: We used the data from the Geneplus Institute (n = 302), The Cancer Genome Atlas (TCGA) (n = 367),and the Memorial Sloan Kettering Cancer Center (MSKCC) (n = 350) to identify the incidence of CCND1 amplification and the relationship between CCND1 amplification and survival in melanoma patients and explored molecular mechanisms. Results: The frequency of CCND1 amplification co-occurring with BRAF V600, NRAS, NF1, and KIT mutations was low in these three cohorts. Data from TCGA did not show a statistically significant correlation between CCND1 amplification levels and prognosis of melanoma patients irrespective of immune checkpoint inhibitors (ICIs). In contrast, we found opposite results using the MSKCC cohort where CCND1 amplification was an unfavorable prognostic factor for melanoma patients. This was especially true for patients received ICIs who were harboring a high tumor mutation burden (TMB). The TCGA data showed that CCND1 amplification were related to a higher proportion of immunosuppressive cells (Treg cells and M2 macrophages) and a lower proportion of immunity boosting cells (follicular helper T-cells, naive B-cells, CD8+ T-cells). Furthermore, GSEA analysis from the TCGA database suggests that the signaling pathways such as oxidative phosphorylation, reactive oxygen species, adipogenesis, fatty acid metabolism, DNA repair, and myc targets were differentially enriched in melanoma tumors with CCND1 amplification. Finally, we found that angiogenesis related molecules (HIF1A, VEGFA, VEGFR1, FGF2, FGFR1, FGFR4, HGF, PDGFA, PDGFRA, ANGPT1, and ANGPT2) were remarkable decreased in a CCND1 High Amplification group from the TCGA database. Conclusions: Melanoma with CCND1 amplificationis an independent genomic subtype associated with a poor prognosis, an immunosuppressive TME, activated oxidative and lipid metabolism, and down-regulated angiogenesis. Taken together, avoiding ICIs and antiangiogenic agents, while employing CDK4/6 inhibitors alone or in combination with ICIs, targeting oxidative and lipid metabolism pathway may be effective and promising therapeutic strategies for melanoma patients harboring CCND1 amplification.


Sign in / Sign up

Export Citation Format

Share Document