scholarly journals CXCR2 Levels Correlate with Immune Infiltration and a Better Prognosis of Triple-Negative Breast Cancers

Cancers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2328
Author(s):  
Florence Boissière-Michot ◽  
William Jacot ◽  
Océane Massol ◽  
Caroline Mollevi ◽  
Gwendal Lazennec

Chemokines and their receptors are key players in breast cancer progression and outcome. Previous studies have shown that the chemokine receptor CXCR2 was expressed at higher levels by cells of the tumor microenvironment in triple-negative breast cancers (TNBCs). The aim of this study was to focus our attention on a retrospective cohort of 290 TNBC cases and analyze the involvement of CXCR2, CD11b (a marker of granulocytes) and CD66b (a marker of neutrophils) and their link with immune infiltration and immune checkpoint markers. We report that high densities of CXCR2-, CD11b- and CD66b-positive cells were associated with high-grade tumors. Moreover, molecular apocrine TNBCs, defined here as tumors that express both AR and FOXA1 biomarkers, exhibited low levels of CXCR2 and CD11b. High CXCR2 and CD11b levels were correlated with elevated density of tumor-infiltrating lymphocytes (TILs), CD8+ cytotoxic lymphocytes, expression of PD-L1 by tumor and stromal cells and of PD-1 by stromal cells. On the other hand, CD66b levels were associated only with CD8+, stromal PD-L1 and PD-1 expression. In univariate analysis, low levels of CXCR2 were correlated with poor OS and RFS. In multivariate analysis, low levels of CXCR2 were associated with poor OS. Finally, in TNBC treated with adjuvant chemotherapy, CXCR2 density was associated with longer RFS. Overall, our data highlight the potential beneficial association of high levels of CXCR2 with a subgroup of TNBC patients characterized by a better prognosis.

Cancers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2657
Author(s):  
Luca Campedel ◽  
Paul Blanc-Durand ◽  
Asker Bin Asker ◽  
Jacqueline Lehmann-Che ◽  
Caroline Cuvier ◽  
...  

Inflammatory breast cancers are very aggressive, and among them, triple negative breast cancer (TNBC) has the worst prognosis. While many studies have investigated the association between tumor-infiltrating lymphocytes (TIL) before neoadjuvant chemotherapy (NAC) and outcome in TNBC, the impact of post-NAC TIL and TIL variation in triple negative inflammatory breast cancer (TNIBC) outcome is unknown. Between January 2010 to December 2018, all patients with TNIBC seen at the breast disease unit (Saint-Louis Hospital) were treated with dose-dense dose-intense NAC. The main objective of the study was to determine factors associated with event-free survival (EFS), particularly pathological complete response (pCR), pre- and post-NAC TIL, delta TIL and post-NAC lymphovascular invasion (LVI). After univariate analysis, post-NAC LVI (HR 2.06; CI 1.13–3.74; p = 0.02), high post-NAC TIL (HR 1.81; CI 1.07–3.06; p = 0.03) and positive delta TIL (HR 2.20; CI 1.36–3.52; p = 0.001) were significantly associated with impaired EFS. After multivariate analysis, only a positive TIL variation remained negatively associated with EFS (HR 1.88; CI 1.05–3.35; p = 0.01). TNIBC patients treated with intensive NAC who present TIL enrichment after NAC have a high risk of relapse, which could be used as a prognostic marker in TNIBC and could help to choose adjuvant post-NAC treatment.


2020 ◽  
Author(s):  
Dylan Dieters-Castator ◽  
Paola Marino Dantonio ◽  
Matt Piaseczny ◽  
Guihua Zhang ◽  
Jiahui Liu ◽  
...  

AbstractThe tumour microenvironment (TME) is an important mediator of breast cancer progression. Cancer-associated fibroblasts (CAFs) constitute a major component of the TME and may originate from tissue-associated fibroblasts or infiltrating mesenchymal stromal cells (MSCs). The mechanisms by which cancer cells activate fibroblasts and recruit MSCs to the TME are largely unknown, but likely include deposition of a pro-tumourigenic secretome. The secreted embryonic protein NODAL is clinically associated with breast cancer stage and promotes tumour growth, metastasis, and vascularization. Herein, we show that NODAL expression correlates with the presence of activated fibroblasts in human triple negative breast cancers and that it directly induces CAF phenotypes. We further show that NODAL reprograms cancer cell secretomes by simultaneously altering levels of chemokines (e.g. CXCL1), cytokines (e.g. IL-6) and growth factors (e.g. PDGFRA), leading to alterations in MSC chemotaxis. We therefore demonstrate a hitherto unappreciated mechanism underlying the dynamic regulation of the TME.


Cancers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2076
Author(s):  
Florence Boissière-Michot ◽  
William Jacot ◽  
Julien Fraisse ◽  
Sophie Gourgou ◽  
Colin Timaxian ◽  
...  

The tumor microenvironment appears essential in cancer progression and chemokines are mediators of the communication between cancer cells and stromal cells. We have previously shown that the ligands of the chemokine receptor CXCR2 were expressed at higher levels in triple-negative breast cancers (TNBC). Our hypothesis was that CXCR2 expression could also be altered in breast cancer. Here, we have analyzed the potential role of CXCR2 in breast cancer in a retrospective cohort of 105 breast cancer patients. Expression of CXCR2, CD11b (a marker of granulocytes) and CD66b (a marker of neutrophils) was analyzed by immunohistochemistry on tumor samples. We demonstrated that CXCR2 stained mainly stromal cells and in particular neutrophils. CXCR2, CD11b and CD66b expression were correlated with high grade breast cancers. Moreover, TNBC displayed a higher expression of CXCR2, CD11b and CD66b than hormone receptor positive or Her2 positive tumors. High levels of CXCR2 and CD11b, but not CD66b, were associated with a higher infiltration of T lymphocytes and B lymphocytes. We also observed a correlation between CXCR2 and AP-1 activity. In univariate analyses, CXCR2, but not CD11b or CD66b, was associated with a lower risk of relapse; CXCR2 remained significant in multivariate analysis. Our data suggest that CXCR2 is a stromal marker of TNBC. However, higher levels of CXCR2 predicted a lower risk of relapse.


Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 763 ◽  
Author(s):  
Justin M Brown ◽  
Marie-Claire D Wasson ◽  
Paola Marcato

Treatment decisions for breast cancer are based on staging and hormone receptor expression and include chemotherapies and endocrine therapy. While effective in many cases, some breast cancers are resistant to therapy, metastasize and recur, leading to eventual death. Higher percentages of tumor-initiating cancer stem cells (CSCs) may contribute to the increased aggressiveness, chemoresistance, and worse outcomes among breast cancer. This may be particularly true in triple-negative breast cancers (TNBCs) which have higher percentages of CSCs and are associated with worse outcomes. In recent years, increasing numbers of long non-coding RNAs (lncRNAs) have been identified as playing an important role in breast cancer progression and some of these have been specifically associated within the CSC populations of breast cancers. LncRNAs are non-protein-coding transcripts greater than 200 nucleotides which can have critical functions in gene expression regulation. The preclinical evidence regarding lncRNA antagonists for the treatment of cancer is promising and therefore, presents a potential novel approach for treating breast cancer and targeting therapy-resistant CSCs within these tumors. Herein, we summarize the lncRNAs that have been identified as functionally relevant in breast CSCs. Furthermore, our review of the literature and analysis of patient datasets has revealed that many of these breast CSC-associated lncRNAs are also enriched in TNBC. Together, this suggests that these lncRNAs may be playing a particularly important role in TNBC. Thus, certain breast cancer-promoting/CSC-associated lncRNAs could be targeted in the treatment of TNBCs and the CSCs within these tumors should be susceptible to anti-lncRNA therapy.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Karima Oualla ◽  
Loay Kassem ◽  
Lamiae Nouiakh ◽  
Lamiae Amaadour ◽  
Zineb Benbrahim ◽  
...  

Triple-negative breast cancer (TNBC) is characterized by the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). It accounts for 15%–20% of all breast cancers and is associated with an aggressive evolution and poor outcomes with the majority of recurrences and deaths occurring in the first 5 years. Chemotherapy remains the mainstay of treatment in the absence of effective targets, but the good understanding of immune tumor microenvironment, the identification of immune-related targets, and the role of tumor-infiltrating lymphocytes (TILs) in TNBC has allowed to develop promising immunotherapeutic strategies for this unique subset of breast cancer. Recently, immunotherapy is being extensively explored in TNBC and clinical trials have shown promising results. In this article, we tried to explain the rationale and mechanisms of targeting the immune system in TNBC, to report the results from recent clinical trials that put immunotherapy as a new standard of care in TNBC in addition to ongoing trials and future directions in the next decade.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Bruna Cerbelli ◽  
Angelina Pernazza ◽  
Andrea Botticelli ◽  
Lucio Fortunato ◽  
Massimo Monti ◽  
...  

Triple negative breast cancer (TNBC) has an aggressive clinical behaviour, with a poorer prognosis compared to other subtypes. Recently, tumor-infiltrating lymphocytes (TILs) have been proposed as a predictive biomarker for a better clinical outcome and pathological response (pR) after neoadjuvant chemotherapy (NACT) in TNBC. These data confirm the role of the immune system in the neoplastic progression and in the response to therapy. We performed a retrospective analysis of 54 pre-NACT biopsies of TNBC and compared both the percentage of stromal TILs and the degree of PD-L1 expression with the extent of pR to standard NACT. A pathological complete response (pCR) was achieved in 35% of cases. Univariate analysis showed (i) a significant association between PD-L1 expression in ≥25% of neoplastic cells and the achievement of a pCR (p=0.024); (ii) a significantly higher frequency of pCR in cases showing ≥50% stromal TILs (p<0.001). However in the multivariate analysis only PD-L1 expression on tumor cells remained significantly associated with pCR (OR = 1,13; 95% CI 1,01–1,27), suggesting that the expression of this biomarker could be associated with a subpopulation of TNBC more likely to respond to chemotherapy. These data need to be confirmed by larger studies.


2013 ◽  
Vol 31 (15_suppl) ◽  
pp. 1070-1070
Author(s):  
Beom Seok Ko ◽  
Hee Jeong Kim ◽  
Jong Han Yu ◽  
jong Won Lee ◽  
Byung Ho Sohn ◽  
...  

1070 Background: Triple negative breast cancer (TNBC) often grows rapidly and has poor prognosis, with a high recurrence rate. Because conventional endocrine treatment and HER2 targeted therapy for TNBC is invalid, chemotherapy is the only systemic treatment for TNBC. It is known that several subtypes within the TNBC show different responses to chemotherapy, depending on the subtypes. Recently, a claudin (CLDN) low breast cancer has been identified, exhibiting low expressions of CLDNs 1, 3, 4 and 7. CLDNs are transmembrane proteins that seal tight junctions and are critical for maintaining cell-to-cell adhesion in epithelial cell sheets. However, their role in cancer progression remains largely unexplored. Methods: Surgically removed, formalin-fixed, paraffin-embedded breast cancers from 341 TNBC patients were analyzed to identify CLDN expression.They underwent wide local excision or mastectomy between March, 2004 and December, 2007 at the breast surgery unit of Asan Medical Central Hospital. Results: In our tumor series, we found 45.0% (153/339) of high expressing cases for CLDN1, 57.0% (192/337) for CLDN3, 57.6% (194/337) for CLDN4 and 44.0% (149/339) for CLDN7. Overall, we found 20.5% (70/341) of cases were within the low CLDN expression group and 79.5% (271/341) of tumors were within the high expression group of CLDN1, 3, 4 ,7. Although the high CLDN expression group was significantly associated with positive lymph node status and higher stage, there were no significant differences between CLDN low and high groups in disease free survival (p=0.477) or overall survival (p=0.253). Conclusions: CLDN high tumors are associated with poor prognosis features, but they are not an independent prognostic factor in TNBC patients. However, the mechanisms underlying the different roles of CLDNs in tumorigenesis are largely unclear. Studying the associations of these CLDNs with the TNBC subgroup of breast cancers might provide us with potential diagnostic biomarkers or therapeutic targets for cancer cells.


Sign in / Sign up

Export Citation Format

Share Document