scholarly journals X-ray-Fluorescence Imaging for In Vivo Detection of Gold-Nanoparticle-Labeled Immune Cells: A GEANT4 Based Feasibility Study

Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5759
Author(s):  
Arthur Ungerer ◽  
Theresa Staufer ◽  
Oliver Schmutzler ◽  
Christian Körnig ◽  
Kai Rothkamm ◽  
...  

The growing field of cellular therapies in regenerative medicine and oncology calls for more refined diagnostic tools that are able to investigate and monitor the function and success of said therapies. X-ray Fluorescence Imaging (XFI) can be applied for molecular imaging with nanoparticles, such as gold nanoparticles (GNPs), which can be used in immune cell tracking. We present a Monte Carlo simulation study on the sensitivity of detection and associated radiation dose estimations in an idealized setup of XFI in human-sized objects. Our findings demonstrate the practicability of XFI in human-sized objects, as immune cell tracking with a minimum detection limit of 4.4 × 105 cells or 0.86 μg gold in a cubic volume of 1.78 mm3 can be achieved. Therefore, our results show that the current technological developments form a good basis for high sensitivity XFI.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Łukasz Kiraga ◽  
Paulina Kucharzewska ◽  
Damian Strzemecki ◽  
Tomasz P. Rygiel ◽  
Magdalena Król

Abstract In vivo tracking of administered cells chosen for specific disease treatment may be conducted by diagnostic imaging techniques preceded by cell labeling with special contrast agents. The most commonly used agents are those with radioactive properties, however their use in research is often impossible. This review paper focuses on the essential aspect of cell tracking with the exclusion of radioisotope tracers, therefore we compare application of different types of non-radioactive contrast agents (cell tracers), methods of cell labeling and application of various techniques for cell tracking, which are commonly used in preclinical or clinical studies. We discuss diagnostic imaging methods belonging to three groups: (1) Contrast-enhanced X-ray imaging, (2) Magnetic resonance imaging, and (3) Optical imaging. In addition, we present some interesting data from our own research on tracking immune cell with the use of discussed methods. Finally, we introduce an algorithm which may be useful for researchers planning leukocyte targeting studies, which may help to choose the appropriate cell type, contrast agent and diagnostic technique for particular disease study.


2021 ◽  
Author(s):  
Alifu Nuernisha ◽  
Rong Ma ◽  
Lijun Zhu ◽  
Zhong Du ◽  
Shuang Chen ◽  
...  

Abstract BackgroundNear-infrared II (NIR-II, 900-1700 nm) fluorescence bioimaging with advantages of good biosafety, excellent spatial resolution, high sensitivity and contrast, has attracted great attentions in biomedical research fields. However, most nanoprobes used for NIR-II fluorescence imaging have poor tumor-targeting ability and therapeutic efficiency. To overcome these limitations, a novel NIR-II-emissive theranostic nanoplatform for imaging and treatment of cervical cancer was designed and prepared. The NIR-II-emissive dye IR-783 and chemotherapy drug doxorubicin (DOX) were encapsulated into liposomes, and the tumor-targeting peptide TMTP1 was conjugated to the surface of the liposomes to form IR-783-DOX-TMTP1 nanoparticles (NPs) via self-assembly methods.ResultsThe IR-783-DOX-TMTP1 NPs showed strong NIR-II emission, excellent biocompatibility, a long lifetime, and low toxicity. Further, high-definition NIR-II fluorescence microscopy images of ear blood vessels and intratumor blood vessels were obtained from IR-783-DOX-TMTP1 NPs-stained mice with high spatial resolution under 808 nm laser excitation. Moreover, IR-783-DOX-TMTP1 NPs showed strong tumor targeting ability and high efficiently chemotherapeutic character towards cervical tumors. ConclusionsThe novel targeting and NIR-II-emissive IR-783-DOX-TMTP1 NPs have potential in diagnosis and therapy for cervical cancer.


Chemosensors ◽  
2018 ◽  
Vol 6 (1) ◽  
pp. 1 ◽  
Author(s):  
Bo Si ◽  
Edward Song

Neurotransmitters are chemicals that act as messengers in the synaptic transmission process. They are essential for human health and any imbalance in their activities can cause serious mental disorders such as Parkinson’s disease, schizophrenia, and Alzheimer’s disease. Hence, monitoring the concentrations of various neurotransmitters is of great importance in studying and diagnosing such mental illnesses. Recently, many researchers have explored the use of unique materials for developing biosensors for both in vivo and ex vivo neurotransmitter detection. A combination of nanomaterials, polymers, and biomolecules were incorporated to implement such sensor devices. For in vivo detection, electrochemical sensing has been commonly applied, with fast-scan cyclic voltammetry being the most promising technique to date, due to the advantages such as easy miniaturization, simple device architecture, and high sensitivity. However, the main challenges for in vivo electrochemical neurotransmitter sensors are limited target selectivity, large background signal and noise, and device fouling and degradation over time. Therefore, achieving simultaneous detection of multiple neurotransmitters in real time with long-term stability remains the focus of research. The purpose of this review paper is to summarize the recently developed sensing techniques with the focus on neurotransmitters as the target analyte, and to discuss the outlook of simultaneous detection of multiple neurotransmitter species. This paper is organized as follows: firstly, the common materials used for developing neurotransmitter sensors are discussed. Secondly, several sensor surface modification approaches to enhance sensing performance are reviewed. Finally, we discuss recent developments in the simultaneous detection capability of multiple neurotransmitters.


2019 ◽  
Author(s):  
A. B Dippel ◽  
W. A. Anderson ◽  
J. H. Park ◽  
F. H. Yildiz ◽  
M.C. Hammond

ABSTRACTSecond messenger signaling networks allow cells to sense and adapt to changing environmental conditions. In bacteria, the nearly ubiquitous second messenger molecule cyclic di-GMP coordinates diverse processes such as motility, biofilm formation, and virulence. In bacterial pathogens, these signaling networks allow the bacteria to survive changing environment conditions that are experienced during infection of a mammalian host. While studies have examined the effects of cyclic di-GMP levels on virulence in these pathogens, it has previously not been possible to visualize cyclic di-GMP levels in real time during the stages of host infection. Towards this goal, we generate the first ratiometric, chemiluminescent biosensor scaffold that selectively responds to c-di-GMP. By engineering the biosensor scaffold, a suite of Venus-YcgR-NLuc (VYN) biosensors is generated that provide extremely high sensitivity (KD < 300 pM) and large BRET signal changes (up to 109%). As a proof-of-concept that VYN biosensors can image cyclic di-GMP during host infection, we show that the VYN biosensors function in the context of a tissue phantom model, with only ∼103-104 biosensor-expressing cells required for the measurement. Furthermore, the stable BRET signal suggests that the sensors could be used for long-term imaging of cyclic di-GMP dynamics during host infection. The VYN sensors developed here can serve as robust in vitro diagnostic tools for high throughput screening, as well as genetically encodable tools for monitoring the dynamics of c-di-GMP in live cells, and lay the groundwork for live cell imaging of c-di-GMP dynamics in bacteria during host infection, and other complex environments.


2021 ◽  
pp. 173-192
Author(s):  
Łukasz Kiraga ◽  
Paulina Kucharzewska ◽  
Damian Strzemecki ◽  
Tomasz P. Rygiel ◽  
Magdalena Król
Keyword(s):  

Author(s):  
Yaxi Li ◽  
Hongli Zhou ◽  
Renzhe Bi ◽  
Xiuting Li ◽  
Menglei Zha ◽  
...  

Fluorescence imaging in the second near-infrared window (NIR-II) has been an emerging technique in diverse in vivo applications with high sensitivity/resolution and deep tissue penetration. To date, the designing principle...


2021 ◽  
Author(s):  
Fei Ma ◽  
Chen-Chen Li ◽  
Chun-Yang Zhang

Single-molecule fluorescence imaging is among the most advanced analytical technologies and has been widely adopted for biosensing due to its distinct advantages of simplicity, rapidity, high sensitivity, low sample consumption,...


Nano Letters ◽  
2007 ◽  
Vol 7 (7) ◽  
pp. 1914-1918 ◽  
Author(s):  
Mohammad Eghtedari ◽  
Alexander Oraevsky ◽  
John A. Copland ◽  
Nicholas A. Kotov ◽  
Andre Conjusteau ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document