scholarly journals Building a Foundation for Precision Onco-Nutrition: Docosahexaenoic Acid and Breast Cancer

Cancers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 157
Author(s):  
Henry J. Thompson ◽  
Elizabeth S. Neil ◽  
John N. McGinley ◽  
Vanessa K. Fitzgerald ◽  
Karam El Bayoumy ◽  
...  

In vivo evidence of heterogeneous effects of n-3 fatty acids (N3FA) on cell signaling pathways associated with the reduced growth of breast cancer has been reported and is consistent with the expectation that N3FA will not exert uniform effects on all molecular subtypes of the disease. Similarly, available evidence indicates that many metabolites of N3FA are synthesized by mammalian cells and that they exert metabolite-specific biological activities. To begin to unravel the complex relationships among molecular subtypes and effects exerted by specific N3FA metabolites on those pathways, proof-of-concept experiments were conducted using cell lines representative of common molecular subtypes of human breast cancer. N3FA differed in anticancer activity with docosahexaenoic acid (DHA) having greater anticancer activity than eicosapentaenoic acid. 4-oxo-docosahexaenoic (4-oxo-DHA), a penultimate metabolite of 5-lipoxygenase mediated DHA metabolism, induced dose-dependent inhibition of cell number accumulation with apoptosis as a primary effector mechanism. Interrogation of protein expression data using the Ingenuity Pathway Analysis (IPA) bioinformatics platform indicated that 4-oxo-DHA differentially impacted six canonical pathways and the cellular functions they regulate across common molecular subtypes of breast cancer. This included the endocannabinoid pathway for cancer inhibition that has not been previously reported. These findings provide a rationale for juxtaposing molecular subtype targeted treatment strategies with the adjuvant use of specific N3FA metabolites as an example of precision onco-nutrition (PON) for the management and control of breast cancer.

2020 ◽  
Vol 21 (5) ◽  
pp. 1719 ◽  
Author(s):  
Fatma Elleuch ◽  
Patrick Baril ◽  
Mohamed Barkallah ◽  
Federico Perche ◽  
Slim Abdelkafi ◽  
...  

In order to harness local resources to improve well-being and human health, we aim in this study to investigate if the microalgae Dunaliella sp. isolated from the Tunisian coastal zone possesses any anticancer activity. Dunaliella sp. was cultured under normal (DSC) or stressed (DSS) conditions and extracted using different procedures. The biological activity assessment was performed on the Triple Negative Breast Cancer (TNBC) using 4T1 murine cells as a model. Results indicate that: (i) aqueous extract was the most cytotoxic compared to ethanolic and hydroalcoholic extracts; (ii) DSS activity was superior to that of DSC. DSS extracts induced apoptosis rather than necrosis, as evidenced by DNA fragmentation, PARP-1 cleavage and caspase-3 activation. Evaluation in an orthotopic TNBC model validated the anticancer activity in vivo. Intratumoral injection of DSS extract resulted in reduced tumor growth and an enhanced immune system activation. On the transcriptional side, the expression level of the immunosuppressive enzyme Arg-1 was decreased, as well as those of NOS-2 and COX-2 genes. These results suggest a potential anticancer activity of Tunisian Dunaliella sp. deserving further attention.


Cancers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 4287
Author(s):  
Sergiusz Łukasiewicz ◽  
Marcin Czeczelewski ◽  
Alicja Forma ◽  
Jacek Baj ◽  
Robert Sitarz ◽  
...  

Breast cancer (BC) is the most frequently diagnosed cancer in women worldwide with more than 2 million new cases in 2020. Its incidence and death rates have increased over the last three decades due to the change in risk factor profiles, better cancer registration, and cancer detection. The number of risk factors of BC is significant and includes both the modifiable factors and non-modifiable factors. Currently, about 80% of patients with BC are individuals aged >50. Survival depends on both stage and molecular subtype. Invasive BCs comprise wide spectrum tumors that show a variation concerning their clinical presentation, behavior, and morphology. Based on mRNA gene expression levels, BC can be divided into molecular subtypes (Luminal A, Luminal B, HER2-enriched, and basal-like). The molecular subtypes provide insights into new treatment strategies and patient stratifications that impact the management of BC patients. The eighth edition of TNM classification outlines a new staging system for BC that, in addition to anatomical features, acknowledges biological factors. Treatment of breast cancer is complex and involves a combination of different modalities including surgery, radiotherapy, chemotherapy, hormonal therapy, or biological therapies delivered in diverse sequences.


Author(s):  
Fei Qu ◽  
Yanru Cui ◽  
Shixin Yang ◽  
Zhihua Li ◽  
Jingxian Ding ◽  
...  

IntroductionIt has been unclear that ERK play the effects and relative mechanism in breast cancer development. The purpose of this work was to discuss the ERK play the effect in breast cancer and relative mechanisms.Material and methodsEvaluating ERK and CD59 proteins expression in difference tissue from patients by IHC assay. Using MCF-7 and MDA-MB-231 cell lines which were breast cancer cell lines as target cell lines in our study. In vitro study, evaluating cell biological activities including proliferation, apoptosis, cell cycle, invasion, adherent and migration by MTT, clone test, TUNEL assay, flow cytometry and wound healing. And measuring relative proteins expressions by WB assay. In vivo study, measuring tumor weight and volume, the apoptosis cell number were evaluated by TUNEL assay and relative proteins expressions by IHC assay.ResultsCompared with adjacent normal tissue, the ERK and CD59 proteins expression were significantly increased in breast cancer tissues (P<0.001, respectively).In vitro and vivo studies, with ERK knockdown, the cell biological activities were significantly depressed with CD59 suppressing (P<0.001, respectively). And the relative proteins including CD59, PKD, P53, E-cadherin and Vimentin were significantly differences (P<0.001, respectively).ConclusionsERK play an oncology gene in breast cancer development, ERK inhibitor had effects to suppress breast cancer biological via regulation CD59 in vitro and vivo study.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 572-572
Author(s):  
Yunan Han ◽  
Shuai Xu ◽  
Graham A. Colditz ◽  
Adetunji T. Toriola

572 Background: Breast cancer is the second leading cause of cancer death in U.S. women. On the molecular level, breast cancer is a heterogeneous disease. Heterogeneous expressions of estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) are etiologically and clinically meaningful, as they map to distinct risk factors and different treatment strategies. Although breast cancer mortality has been declining since 1990, little is known about mortality trends according to molecular subtypes at the population level. Methods: We examined the incidence-based mortality rates and trends among women who were diagnosed with invasive breast cancer from 2010 through 2017 using the Surveillance, Epidemiology, and End Results (SEER) database. We defined incidence-based mortality using a moving 5-year calendar period starting in 2014. We further assessed mortality according to breast cancer molecular subtypes: luminal A (ER and/or PR positive, HER2 negative), luminal B (ER and/or PR positive, HER2 positive), HER2-enriched (HER2 over-expressed or amplified, ER and PR negative) and triple-negative (ER and PR negative, HER2 negative) tumors. We calculated annual percent changes (APC) in incidence-based mortality using joinpoint regression models. Results: Overall, incidence-based mortality for breast cancer significantly decreased by 1.5% annually from 2014 through 2017 (APC, -1.5%; 95% coefficient interval [CI], -2.3% to -0.7%; p<0.001). Incidence-based mortality decreased annually by 2.0% for luminal A breast cancer (APC, -2.0%; 95% CI, -3.7% to -0.3%; p<0.001), 2.1% for luminal B breast cancer (APC, -2.1%; 95% CI, -5.4% to 1.4%; p=0.1), 1.1% for triple-negative breast cancer (TNBC) (APC, -1.1%; 95% CI, -2.1% to -0.0%; p<0.001). However, incidence-based mortality for HER2-enriched breast cancer increased 2.3% annually during the study period (APC, 2.3%; 95% CI, -2.4% to 7.2%; p=0.2). Conclusions: Between 2014 and 2017, incidence-based mortality for luminal A, luminal B, and TNBC decreased among U.S. women, with a larger decrease observed for luminal tumors. However, incidence-based mortality for HER2-enriched breast cancer increased. The favorable incidence-based mortality trends for luminal tumors and TNBC are likely due to the continuing improvement in treatments and early detection. The increasing trend of incidence-based mortality for HER2-enriched breast cancer constitutes a priority for cancer control activities and further research.


Author(s):  
Fatemah Bahman ◽  
Valeria Pittalà ◽  
Mohamed Haider ◽  
Khaled Greish

Triple negative breast cancer (TNBC) is the most aggressive breast cancer accounting for around 15% of identified breast cancer cases. TNBC, by lacking estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), is unresponsive to current targeted therapies. Existing treatment relies on chemotherapeutic treatment but, despite an initial response to chemotherapy, the inception of resistance and relapse is unfortunately common. Dasatinib is an approved second-generation inhibitor of multiple tyrosine kinases and literature data strongly support its use in the management of TNBC. However, dasatinib binds to plasma proteins and undergoes extensive metabolism through oxidation and conjugation. To protect dasatinib from fast pharmacokinetic degradation and to prolong its activity, it was encapsulated on poly(styrene-co-maleic acid) (SMA) micelles. The obtained SMA-dasatinib nanoparticles (NPs) were evaluated for their physicochemical properties, in vitro antiproliferative activity in different TNBC cell lines, and in vivo anticancer activity in a syngeneic model of breast cancer. Obtained results showed that SMA-dasatinib is more potent against 4T1 TNBC tumor growth in vivo compared to free drug. This enhanced effect was ascribed to the encapsulation of the drug protecting it from a rapid metabolism. Our finding highlights the often-overlooked value of nanoformulations in protecting its cargo from degradation. Overall, results may provide an alternative therapeutic strategy for TNBC management.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e14008-e14008
Author(s):  
In Ah Kim ◽  
Jae Sik Kim ◽  
Kyubo Kim ◽  
Wonguen Jung ◽  
Kyung Hwan Shin ◽  
...  

e14008 Background: We analyzed the treatment outcome of breast cancer patients with brain metastases (BM) in Korea to identify the prognostic factors and the role of whole brain radiation therapy (WBRT). Methods: Seven hundred thirty patients of breast cancer with BM treated at 17 institutions in Korea from 2000 to 2014 were analyzed. The median follow-up duration was 12 months. The analysis consisted of three cohorts: in cohort A, a total of 730 patients were included; in cohort B, 538 patients with available follow-up imaging after initial brain-directed treatment; and in cohort C, 54 patients receiving salvage WBRT due to recurrent BM after initial Stereotactic radiosurgery or WBRT. Overall survival (OS) was calculated from BM diagnosis in cohort A or from the last day of salvage WBRT in cohort C. Results: Median OS of cohort A was 15 months. In multivariate analysis, histologic grade 3, extracranial metastasis, number of BM > 4, hormone receptor (HR) or HER2 negativity, and shorter time interval to diagnosis of BM were associated with inferior OS. Among 538 patients in cohort B, 201 showed subsequent development of new BM at a median of 11 months after stereotactic radiosurgery or WBRT for the management of initial BM (at 1 year, HR+/HER2- 51.9%, HER2+ 44.0%, and TNBC 69.6%, respectively; p = 0.008). Upfront WBRT reduced subsequent development of new BM, which showed the significant difference among molecular subtypes (HR+/HER2-, 42% reduction at 1 year, p < 0.001; HER2+, 18.5%, p = 0.004; TNBC, 16.9%, p = 0.071). Multivariate analysis showed that shorter time interval to BM, TNBC subtype, extracranial systemic disease, number of BM > 4, and involvement of both tentoria increased subsequent development of new BM. Anti-HER2 therapy for HER2+ patients and upfront WBRT significantly reduced risk of new BM. In cohort C, upfront WBRT prolonged the salvage WBRT-free duration (median 6.9 vs. 8.7 months, p = 0.058). Median OS was 6.8 months after salvage WBRT. Longer interval to salvage WBRT, controlled primary tumor, high dose of salvage WBRT (BED10 > 37.5 Gy), and systemic treatment after salvage WBRT showed better OS. Uncontrolled extracranial systemic disease and salvage WBRT due to local progression without distant intracranial failure showed worse OS. Conclusions: The rates of new BM showed the significant differences among molecular subtypes. Upfront WBRT decreased subsequent development of new BM and this effect was dependent on the molecular subtype as well. Anti-HER2 therapy for HER2+ patients significantly decreased the subsequent development of new BM. On salvage WBRT setting, the patients having high dose of salvage WBRT, stable extracranial systemic disease and subsequent systemic therapy showed better OS.


2021 ◽  
Vol 28 ◽  
Author(s):  
Muhammad Ijaz ◽  
Muhammad Shahbaz ◽  
Wenjie Jiang ◽  
Yikang Shi ◽  
Xiuli Guo ◽  
...  

Aim: Being the common cause and major burden of deaths globally, timely management of cancer is crucial. Background: Thymic immunosuppressive pentapeptide (TIPP) is a novel pentapeptide originally obtained from calf thymic immunosuppressive extract. Previously, TIPP has been proved to suppress the allergic and inflammatory responses in allergic mice via blocking MAP kinases/NF-κB signaling pathways. Objective: In this study, in vitro anticancer activity of TIPP was tested on two different types of cancers using MCF-7 and K562 cell lines. Methods: Tumor xenograft models for breast cancer and chronic myeloid leukemia were designed. In vivo anticancer activity of TIPP was investigated on both cancer types. The liver and tumor tissues of the mice were preserved for immunohistochemistry analysis. Results: In vitro anticancer activity of TIPP showed significant inhibition on cell viability of both breast cancer and chronic myeloid leukemia. In vivo anticancer effect of TIPP in both types of cancer models further proved the potent anticancer nature of TIPP. Immunohistochemistry analysis assured that TIPP is a safe drug for normal organs such as the liver. Conclusion: Our present study revealed that TIPP is a potent anticancer drug and an important treatment option for various diseases. Further work is needed to test the flexible and proficient activity of the novel peptide.


BMC Cancer ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Zhao-hua Gao ◽  
Cun-xin Li ◽  
Ming Liu ◽  
Jia-yuan Jiang

Abstract Background Whether tumour-infiltrating lymphocytes (TILs) play different roles in different molecular subtypes of breast cancer remains unknown. Additionally, their prognostic and predictive value in different molecular subtypes of breast cancer is still controversial. The aim of our meta-analysis was to assess the prognostic and predictive value of TILs in different molecular subtypes of breast cancer by summarizing all relevant studies performing multivariate analysis. Methods PubMed, Embase, EBSCO, ScienceDirect, the Cochrane Database and Web of Science were comprehensively searched (until March 2020). Hazard ratios (HRs), odds ratios (ORs) and their 95% confidence intervals (CIs) were used as effect measures to perform our meta-analysis. A random effect model was used. Stata software, version 15 (2017) (StataCorp, College Station, TX, USA) was used to perform the statistical analysis. Results Thirty-three studies including 18,170 eligible breast cancer patients were analysed. The meta-analysis showed that high TIL expression was significantly associated with increased pathological complete response (pCR) rates after neoadjuvant chemotherapy in patients with the HER2-enriched molecular subtype (OR = 1.137, 95% CI [1.061 ~ 1.218], p < 0.001) and triple-negative breast cancer (TNBC) subtype (OR = 1.120, 95% CI [1.061 ~ 1.182], p < 0.001). However, high TIL expression was not significantly associated with high pCR rates after neoadjuvant chemotherapy in patients with the luminal molecular subtype of breast cancer (OR = 1.154, 95% CI [0.789 ~ 1.690], p = 0.460). We carried out a meta-analysis on the HRs of overall survival (OS) and disease-free survival (DFS) to assess the prognostic value of TILs in breast cancer with different molecular subtypes more deeply. Our meta-analysis confirmed that high TILs were associated with significantly improved DFS in patients with the HER2-enriched molecular subtype [HR = 0.940, 95% CI (0.903 ~ 0.979), p = 0.003] and TNBC molecular subtype [HR = 0.907, 95% CI (0.862 ~ 0.954), p < 0.001]. However, high TILs were not associated with significantly better DFS in patients with the luminal molecular subtype of breast cancer [HR = 0.998, 95% CI (0.977 ~ 1.019), p = 0.840]. Furthermore, the results confirmed that high TILs were significantly related to better OS in patients with the HER2-enriched molecular subtype [HR = 0.910, 95% CI (0.866 ~ 0.957), p < 0.001] and TNBC molecular subtype [HR = 0.869, 95% CI (0.836 ~ 0.904), p < 0.001]. Conversely, the summarized results indicated that high TILs were significantly associated with poor OS in patients with the luminal molecular subtype of breast cancer [HR = 1.077, 95% CI (1.016 ~ 1.141), p = 0.012]. Conclusions Our meta-analysis confirms that high TILs are associated with favourable survival and predicts pCR in breast cancer patients with the TNBC and HER2-enriched molecular subtypes.


2019 ◽  
Vol 100 (3) ◽  
pp. 400-413
Author(s):  
Milica Krstic ◽  
Haider M. Hassan ◽  
Bart Kolendowski ◽  
M. Nicole Hague ◽  
Pieter. H. Anborgh ◽  
...  

Abstract TBX3 is a member of the highly conserved family of T-box transcription factors involved in embryogenesis, organogenesis and tumor progression. While the functional role of TBX3 in tumorigenesis has been widely studied, less is known about the specific functions of the different isoforms (TBX3iso1 and TBX3iso2) which differ in their DNA-binding domain. We therefore sought to investigate the functional consequence of this highly conserved splice event as it relates to TBX3-induced tumorigenesis. By utilizing a nude mouse xenograft model, we have identified differential tumorigenic potential between TBX3 isoforms, with TBX3iso1 overexpression more commonly associated with invasive carcinoma and high tumor vascularity. Transcriptional analysis of signaling pathways altered by TBX3iso1 and TBX3iso2 overexpression revealed significant differences in angiogenesis-related genes. Importantly, osteopontin (OPN), a cancer-associated secreted phosphoprotein, was significantly up-regulated with TBX3iso1 (but not TBX3iso2) overexpression. This pattern was observed across three non/weakly-tumorigenic breast cancer cell lines (21PT, 21NT, and MCF7). Up-regulation of OPN in TBX3iso1 overexpressing cells was associated with induction of hyaluronan synthase 2 (HAS2) expression and increased retention of hyaluronan in pericellular matrices. These transcriptional changes were accompanied by the ability to induce endothelial cell vascular channel formation by conditioned media in vitro, which could be inhibited through addition of an OPN neutralizing antibody. Within the TCGA breast cancer cohort, we identified an 8.1-fold higher TBX3iso1 to TBX3iso2 transcript ratio in tumors relative to control, and this ratio was positively associated with high-tumor grade and an aggressive molecular subtype. Collectively, the described changes involving TBX3iso1-dependent promotion of angiogenesis may thus serve as an adaptive mechanism within breast cancer cells, potentially explaining differences in tumor formation rates between TBX3 isoforms in vivo. This study is the first of its kind to report significant functional differences between the two TBX3 isoforms, both in vitro and in vivo.


2011 ◽  
Vol 15 (1) ◽  
pp. 52 ◽  
Author(s):  
Mohsen Daneshtalab ◽  
Abeer Ahmed

Quinolones are considered as a big family of multi-faceted drugs; their chemical synthesis is flexible and can be easily adapted to prepare new congeners with rationally devised structures. This is shown by the description of many thousands of derivatives in the literature. Scientists could accurately describe their QSAR, which is essential for effective drug design. This also gave them the chance to discover new and unprecedented activities, which makes quinolones an endless source of hope and enables further development of new clinically useful drugs. Quinolones are among the most common frameworks present in the bioactive molecules that have dominated the market for more than four decades. Since 1962, 4(1H)-quinolone-3-carboxylic acid derivatives are widely used as antibacterial agents. Quinolones have a broad and potent spectrum of activity and are also used as second-line drugs to treat tuberculosis (TB). Recently, quinolones have been reported to display “nonclassical” biological activities, such as antitumor, anti-HIV-1 integrase, anti- HCV-NS3 helicase and -NS5B-polymerase activities. The present review focuses on the structural modifications responsible for the transformation of an antibacterial into an anticancer agent and/or an antiviral agent. Indeed, quinolones’ antimicrobial action is distinguishable among antibacterial agents, because they target different type II topoisomerase enzymes. Many derivatives of this family show high activity against bacterial topoisomerases and eukaryotic topoisomerases, and are also toxic to cultured mammalian cells and in vivo tumor models. Moreover, quinolones have shown antiviral activity against HIV and HCV viruses. In this context the quinolones family of drugs seem to link three different biological activities (antibacterial, anticancer, and the antiviral profiles) and the review will also provide an insight into the different mechanisms responsible for these activities among different species. This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For Readers”) may comment by clicking on ABSTRACT on the issue’s contents page.


Sign in / Sign up

Export Citation Format

Share Document