scholarly journals Systemic Delivery of mLIGHT-Armed Myxoma Virus Is Therapeutic for Later-Stage Syngeneic Murine Lung Metastatic Osteosarcoma

Cancers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 337
Author(s):  
John D. Christie ◽  
Nicole Appel ◽  
Liqiang Zhang ◽  
Kenneth Lowe ◽  
Jacquelyn Kilbourne ◽  
...  

Cancers that metastasize to the lungs represent a major challenge in both basic and clinical cancer research. Oncolytic viruses are newly emerging options but successful delivery and choice of appropriate therapeutic armings are two critical issues. Using an immunocompetent murine K7M2-luc lung metastases model, the efficacy of MYXV armed with murine LIGHT (TNFSF14/CD258) expressed under virus-specific early/late promoter was tested in an advanced later-stage disease K7M2-luc model. Results in this model show that mLIGHT-armed MYXV, delivered systemically using ex vivo pre-loaded PBMCs as carrier cells, reduced tumor burden and increased median survival time. In vitro, when comparing direct infection of K7M2-luc cancer cells with free MYXV vs. PBMC-loaded virus, vMyx-mLIGHT/PBMCs also demonstrated greater cytotoxic capacity against the K7M2 cancer cell targets. In vivo, systemically delivered vMyx-mLIGHT/PBMCs increased viral reporter transgene expression levels both in the periphery and in lung tumors compared to unarmed MYXV, in a tumor- and transgene-dependent fashion. We conclude that vMyx-mLIGHT, especially when delivered using PBMC carrier cells, represents a new potential therapeutic strategy for solid cancers that metastasize to the lung.

2021 ◽  
pp. 1-11
Author(s):  
Yuzaburo Shimizu ◽  
Joy Gumin ◽  
Feng Gao ◽  
Anwar Hossain ◽  
Elizabeth J. Shpall ◽  
...  

OBJECTIVE Delta-24-RGD is an oncolytic adenovirus that is capable of replicating in and killing human glioma cells. Although intratumoral delivery of Delta-24-RGD can be effective, systemic delivery would improve its clinical application. Bone marrow–derived human mesenchymal stem cells (BM-hMSCs) obtained from healthy donors have been investigated as virus carriers. However, it is unclear whether BM-hMSCs can be derived from glioma patients previously treated with marrow-toxic chemotherapy or whether such BM-hMSCs can deliver oncolytic viruses effectively. Herein, the authors undertook a prospective clinical trial to determine the feasibility of obtaining BM-hMSCs from patients with recurrent malignant glioma who were previously exposed to marrow-toxic chemotherapy. METHODS The authors enrolled 5 consecutive patients who had been treated with radiation therapy and chemotherapy. BM aspirates were obtained from the iliac crest and were cultured to obtain BM-hMSCs. RESULTS The patient-derived BM-hMSCs (PD-BM-hMSCs) had a morphology similar to that of healthy donor–derived BM-hMSCs (HD-BM-hMSCs). Flow cytometry revealed that all 5 cell lines expressed canonical MSC surface markers. Importantly, these cultures could be made to differentiate into osteocytes, adipocytes, and chondrocytes. In all cases, the PD-BM-hMSCs homed to intracranial glioma xenografts in mice after intracarotid delivery as effectively as HD-BM-hMSCs. The PD-BM-hMSCs loaded with Delta-24-RGD (PD-BM-MSC-D24) effectively eradicated human gliomas in vitro. In in vivo studies, intravascular administration of PD-BM-MSC-D24 increased the survival of mice harboring U87MG gliomas. CONCLUSIONS The authors conclude that BM-hMSCs can be acquired from patients previously treated with marrow-toxic chemotherapy and that these PD-BM-hMSCs are effective carriers for oncolytic viruses.


Haematologica ◽  
2019 ◽  
Vol 105 (10) ◽  
pp. 2440-2447 ◽  
Author(s):  
Oronza A. Botrugno ◽  
Silvia Bianchessi ◽  
Desirée Zambroni ◽  
Michela Frenquelli ◽  
Daniela Belloni ◽  
...  

Therapeutic strategies designed to tinker with cancer cell DNA damage response have led to the widespread use of PARP inhibitors for BRCA1/2-mutated cancers. In the haematological cancer multiple myeloma, we sought to identify analogous synthetic lethality mechanisms that could be leveraged upon established cancer treatments. The combination of ATR inhibition using the compound VX-970 with a drug eliciting interstrand cross-links, melphalan, was tested in in vitro, ex vivo, and most notably in vivo models. Cell proliferation, induction of apoptosis, tumor growth and animal survival were assessed. The combination of ATM inhibition with a drug triggering double strand breaks, doxorucibin, was also probed. We found that ATR inhibition is strongly synergistic with melphalan, even in resistant cells. The combination was dramatically effective in targeting myeloma primary patient cells and cell lines reducing cell proliferation and inducing apoptosis. The combination therapy significantly reduced tumor burden and prolonged survival in animal models. Conversely, ATM inhibition only marginally impacted on myeloma cell survival, even in combination with doxorucibin at high doses. These results indicate that myeloma cells extensively rely on ATR, but not on ATM, for DNA repair. Our findings posit that adding an ATR inhibitor such as VX-970 to established therapeutic regimens may provide a remarkably broad benefit to myeloma patients.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1394
Author(s):  
Joanna Jazowiecka-Rakus ◽  
Agata Hadrys ◽  
Masmudur M. Rahman ◽  
Grant McFadden ◽  
Wojciech Fidyk ◽  
...  

Pancreatic ductal adenocarcinoma (PDAC) is a weakly immunogenic fatal neoplasm. Oncolytic viruses with dual anti-cancer properties—oncolytic and immune response-boosting effects—have great potential for PDAC management. Adipose-derived stem cells (ADSCs) of mesenchymal origin were infected ex vivo with recombinant myxoma virus (MYXV), which encodes murine LIGHT, also called tumor necrosis factor ligand superfamily member 14 (TNFSF14). The viability and proliferation of ADSCs were not remarkably decreased (1–2 days) following MYXV infection, in sharp contrast to cells of pancreatic carcinoma lines studied, which were rapidly killed by the infection. Comparison of the intraperitoneal (IP) vs. the intravenous (IV) route of ADSC/MYXV administration revealed more pancreas-targeted distribution of the virus when ADSCs were delivered IP to mice bearing orthotopically injected PDAC. The biodistribution, tumor burden reduction and anti-tumor adaptive immune response were examined. Bioluminescence data, used to assess the presence of the luciferase-tagged virus after IP injection, indicated enhanced trafficking into the pancreata of mice bearing orthotopically-induced PDAC, as compared to tumor-free animals, resulting in extended survival of the treated PDAC-seeded animals and in the boosted expression of key adaptive immune response markers. We conclude that ADSCs pre-loaded with transgene-armed MYXV and administered IP allow for the effective ferrying of the oncolytic virus to sites of PDAC and mediate improved tumor regression.


Viruses ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 558 ◽  
Author(s):  
Mariangela Garofalo ◽  
Alessandro Villa ◽  
Nicoletta Rizzi ◽  
Lukasz Kuryk ◽  
Vincenzo Mazzaferro ◽  
...  

Oncolytic viruses (OV) are engineered to infect, replicate in and kill cancer cells. Currently, the OV therapeutic approach is mainly restricted to neoplasia amenable to direct local administration of viral particles, while the possibility of a systemic delivery of cancer-tropic viruses would extend the OV application to the treatment of metastatic neoplasia. Herein, we applied in vivo/ex vivo imaging to demonstrate that cancer tropism is achieved when OV are encapsulated inside extracellular vesicles (EV) administered intravenously (i.v.), but not when injected intraperitoneally (i.p.). Moreover, we show that the therapeutic procedure adopted does not alter the immunomodulatory properties of the viruses.


Cancers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 404 ◽  
Author(s):  
Diana Sánchez ◽  
Gabriela Cesarman-Maus ◽  
Alfredo Amador-Molina ◽  
Marcela Lizano

Oncolytic virotherapy has been investigated for several decades and is emerging as a plausible biological therapy with several ongoing clinical trials and two viruses are now approved for cancer treatment in humans. The direct cytotoxicity and immune-stimulatory effects make oncolytic viruses an interesting strategy for cancer treatment. In this review, we summarize the results of in vitro and in vivo published studies of oncolytic viruses in different phases of evaluation in dogs, using PubMed and Google scholar as search platforms, without time restrictions (to date). Natural and genetically modified oncolytic viruses were evaluated with some encouraging results. The most studied viruses to date are the reovirus, myxoma virus, and vaccinia, tested mostly in solid tumors such as osteosarcomas, mammary gland tumors, soft tissue sarcomas, and mastocytomas. Although the results are promising, there are issues that need addressing such as ensuring tumor specificity, developing optimal dosing, circumventing preexisting antibodies from previous exposure or the development of antibodies during treatment, and assuring a reasonable safety profile, all of which are required in order to make this approach a successful therapy in dogs.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 440-440
Author(s):  
Aldo M. Roccaro ◽  
Antonio Sacco ◽  
Marco Ungari ◽  
Patricia Maiso ◽  
Salomon Manier ◽  
...  

Abstract Abstract 440 Background. Multiple myeloma (MM) patients present with multiple lytic lesions at diagnosis, indicating the presence of continuous dissemination of MM cells from the primary site of tumor development to multiple distant bone marrow (BM) niches. We hypothesized that stromal-derived factor-1 (SDF-1) may represent a target for preventing transition from MGUS (micrometastatic stage) to active-MM (macrometastatic stage); thus resulting in inhibition of MM progression. We therefore evaluated SDF-1 expression in the BM of patients with MGUS, MM, compared to healthy individuals; and tested NOX-A12, a high affinity l-oligonucleotide (Spiegelmer) binder to SDF-1 in MM, looking at its ability to modulate MM cell tumor growth and MM cell homing to the BM in vitro and in vivo . Methods. SDF-1 levels were evaluated by immunohistochemistry on BM specimens obtained from patients with MGUS, active-MM, or healthy individuals; and confirmed by ELISA, using conditioned-medium of BM-mesenchymal stromal cells obtained from MGUS, active-MM and healthy individuals. BM metastatic lesions from primary epithelial tumors were also considered. Co-localization of MM tumor cells (MM.1S-GFP+) with SDF-1 was tested in vivo by in vivo confocal microscopy, using both AlexaFluor633-conjugated-anti-SDF-1 monoclonal antibody and AlexaFluor647-conjugated-NOX-A12 oligonucleotide. Effect of NOX-A12 on modulating MM cell dissemination was tested in vivo, by using in vivo confocal microscopy. In vivo homing and in vivo tumor growth of MM cells (MM.1S-GFP+/luc+) were assessed by using in vivo confocal microscopy and in vivo bioluminescence, in SCID mice treated with 1) vehicle; 2) NOX-A12; 3) bortezomib; 4) NOX-A12+bortezomib. Detection of mobilized MM-GFP+ cells ex vivo was performed by flow cytometry. Effects of drug combination on dissemination of MM cells to distant BM niches was evaluated ex vivo by immunofluorescence on femurs obtained from each cohort of mice. DNA synthesis and adhesion of MM cells in the context of NOX-A12 (50–100nM) treated primary MM BM stromal cells (BMSCs) in presence or absence of bortezomib (2.5–5nM) were tested by thymidine uptake and adhesion in vitro assay, respectively. Synergism was calculated by using CalcuSyn software. NOX-A12-dependent-modulation of signaling was evaluated by western blot on MM cells exposed or not to primary BM-MSCs. Results. Patients with active-MM present with higher BM SDF-1 expression vs. MGUS patients and healthy individuals. Similarly, BM presenting with metastasis from epithelial primary malignancies had higher SDF-1 levels compared to healthy subjects, thus suggesting the importance of SDF-1 in favoring tumor cell metastasis to BM niches. SDF-1 co-localized at BM level with MM tumor cells in vivo. In vitro, NOX-A12 induced a dose-dependent de-adhesion of MM cells from the BMSCs supported by inhibition of BM-MSC-mediated phosphorylation of ERK1/2 and cofilin. These findings were corroborated and validated in vivo: NOX-A12 induced MM cell mobilization from the BM to the peripheral blood as shown ex vivo, by reduced percentage of MM cells in the BM and increased number of MM cells within the peripheral blood of mice treated with NOX-A12 vs. control (BM: 57% vs. 45%; PB: 2.7% vs. 15%). This was supported by inhibited homing of MM cells to the BM of those mice pre-treated with NOX-A12. We next showed that NOX-A12-dependent de-adhesion of MM cells from BMSCs lead to enhanced MM cell sensitivity to bortezomib, as shown in vitro, where a synergistic effect between NOX-A12 and bortezomib was observed (C.I.: .57-.76). These findings were validated in vivo: tumor burden was similar between NOX-A12- and control mice whereas bortezomib-treated mice showed significant reduction in tumor progression compared to the control (P<.05); importantly, significant reduction of tumor burden in those mice treated with sequential administration of NOX-A12 and bortezomib was observed, compared to bortezomib alone-treated mice (P <.05). Similarly, NOX-A12+bortezomib combination induced significant inhibition of MM cell homing, as shown by in vivo confocal microscopy. Conclusion. SDF-1 represents a valid target for inhibiting MM cell dissemination to distant BM niches, thus providing the evidence for using the SDF-1 inhibiting Spiegelmer NOX-A12 to target MM cells at the stage of micrometastasis (MGUS), thus preventing development of symptomatic macrometastatic MM. Disclosures: Zboralski: NOXXON Pharma AG, Berlin, Germany: Employment. Kruschinski:NOXXON Pharma AG, Berlin, Germany: Employment. Ghobrial:Novartis: Advisory Board Other; Onyx: Advisory Board, Advisory Board Other; Millennium: Advisory Board, Advisory Board Other; Bristol Myers Squibb: Advisory Board, Advisory Board Other.


2012 ◽  
Vol 82 (3) ◽  
pp. 228-232 ◽  
Author(s):  
Mauro Serafini ◽  
Giuseppa Morabito

Dietary polyphenols have been shown to scavenge free radicals, modulating cellular redox transcription factors in different in vitro and ex vivo models. Dietary intervention studies have shown that consumption of plant foods modulates plasma Non-Enzymatic Antioxidant Capacity (NEAC), a biomarker of the endogenous antioxidant network, in human subjects. However, the identification of the molecules responsible for this effect are yet to be obtained and evidences of an antioxidant in vivo action of polyphenols are conflicting. There is a clear discrepancy between polyphenols (PP) concentration in body fluids and the extent of increase of plasma NEAC. The low degree of absorption and the extensive metabolism of PP within the body have raised questions about their contribution to the endogenous antioxidant network. This work will discuss the role of polyphenols from galenic preparation, food extracts, and selected dietary sources as modulators of plasma NEAC in humans.


2012 ◽  
Vol 33 (S 01) ◽  
Author(s):  
MC Meinke ◽  
S Schanzer ◽  
S Arndt ◽  
A Kleemann ◽  
J Lademann

1992 ◽  
Vol 68 (06) ◽  
pp. 687-693 ◽  
Author(s):  
P T Larsson ◽  
N H Wallén ◽  
A Martinsson ◽  
N Egberg ◽  
P Hjemdahl

SummaryThe significance of platelet β-adrenoceptors for platelet responses to adrenergic stimuli in vivo and in vitro was studied in healthy volunteers. Low dose infusion of the β-adrenoceptor agonist isoprenaline decreased platelet aggregability in vivo as measured by ex vivo filtragometry. Infusion of adrenaline, a mixed α- and β-adrenoceptor agonist, increased platelet aggregability in vivo markedly, as measured by ex vivo filtragometry and plasma β-thromboglobulin levels. Adrenaline levels were 3–4 nM in venous plasma during infusion. Both adrenaline and high dose isoprenaline elevated plasma von Willebrand factor antigen levels β-Blockade by propranolol did not alter our measures of platelet aggregability at rest or during adrenaline infusions, but inhibited adrenaline-induced increases in vWf:ag. In a model using filtragometry to assess platelet aggregability in whole blood in vitro, propranolol enhanced the proaggregatory actions of 5 nM, but not of 10 nM adrenaline. The present data suggest that β-adrenoceptor stimulation can inhibit platelet function in vivo but that effects of adrenaline at high physiological concentrations are dominated by an α-adrenoceptor mediated proaggregatory action.


Sign in / Sign up

Export Citation Format

Share Document