scholarly journals Photocatalytic Activities of PET Filaments Deposited with N-Doped TiO2 Nanoparticles Sensitized with Disperse Blue Dyes

Catalysts ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 531 ◽  
Author(s):  
Hui Zhang ◽  
Ye Han ◽  
Limeng Yang ◽  
Xiaoling Guo ◽  
Hailiang Wu ◽  
...  

In this study, the enhanced photocatalytic activities of polyethylene terephthalate (PET) filaments deposited with N-doped Titanium dioxide (TiO2) nanoparticles sensitized with water insoluble disperse blue SE–2R dye were investigated. The PET filaments were loaded with two types of N-doped TiO2 nanoparticles, one with and the other without being sensitized with disperse blue SE–2R dye, in one-pot hydrothermal process respectively. The differences in photocatalytic activities between the N-doped TiO2 and the dye-sensitized N-doped TiO2 nanoparticles when exposed to both UV rays and visible lights were analyzed and compared by using their photodegradations of methylene blue (MB) dye. It was demonstrated that the disperse blue dye facilitated the electron–hole separation in N-doped TiO2 nanoparticles faster under UV irradiation than that under visible light irradiation. The enhanced photocatalytic activity of the PET filaments loaded with dye-sensitized N-doped TiO2 nanoparticles exposure to UV irradiation, in comparison with that under visible light irradiation, was attributed to both improved light absorption capacity and high separation efficiency of photo-generated electron–hole pairs. Furthermore, the conduction band and band gap of the PET filaments deposited with N-doped TiO2 nanoparticles sensitized with disperse blue SE–2R dye were influenced by the wavelength of light sources, while its valence band was not affected. The PET filaments deposited with dye-sensitized N-doped TiO2 nanoparticles have a potential application to degrade organic pollutants.

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Xiangchao Meng ◽  
Zisheng Zhang

In photocatalysis, the recombination of electron-hole pairs is generally regarded as one of its most serious drawbacks. The synthesis of various composites with heterojunction structures has increasingly shed light on preventing this recombination. In this work, a BiOBr-Bi2WO6photocatalytic heterojunction semiconductor was synthesized by the facile hydrothermal method and applied in the photocatalytic degradation process. It was determined that both reaction time and temperature significantly affected the crystal structure and morphologies of the photocatalysts. BiOBr (50 at%)-Bi2WO6composites were prepared under optimum synthesis conditions (120°C for 6 h) and by theoretically analyzing the DRS results, it was determined that they possessed the suitable band gap (2.61 eV) to be stimulated by visible-light irradiation. The photocatalytic activities of the as-prepared photocatalysts were evaluated by the degradation ofRhodamine B (RhB)under visible-light irradiation. The experimental conditions, including initial concentration, pH, and catalyst dosage, were explored and the photocatalysts in this system were proven stable enough to be reused for several runs. Moreover, the interpreted mechanism of the heterojunction enhancement effect proved that the synthesis of a heterojunction structure provided an effective method to decrease the recombination rate of the electron-hole pairs, thereby improving the photocatalytic activity.


2018 ◽  
Vol 43 (9) ◽  
pp. 4335-4346 ◽  
Author(s):  
Yang Li ◽  
Liyuan Kuang ◽  
Dequan Xiao ◽  
Appala Raju Badireddy ◽  
Maocong Hu ◽  
...  

Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 987 ◽  
Author(s):  
Hui Zhang ◽  
Qi Tang ◽  
Qingshan Li ◽  
Qingwen Song ◽  
Hailiang Wu ◽  
...  

In this study, the effects of disperse blue dye-sensitization on the photocatalytic properties of the Ag-N co-doped TiO2 nanoparticles loaded on polyethylene terephthalate (PET) filaments are investigated under visible light irradiation. The microstructure and photocatalytic properties of the as-synthesized TiO2 nanocomposites, as well as the as-prepared PET filaments, are systematically characterized. The photocatalytic performance of the PET filaments coated with the Ag-N co-doped TiO2 nanoparticles sensitized with disperse blue dyes is evaluated via its capacity of photo-degrading methyl orange (MO) dyes under visible light irradiation. It is found that the holes are the predominant reactive radical species and the hydroxyl and superoxide radicals play a subordinate role in the photocatalytic reaction process. The reaction rate constant of the photocatalytic composite filaments is nearly 4.0 times higher than that of the PET filaments loaded solely with TiO2 nanoparticles. The resultant photocatalytic composite filaments are evident to be capable of repeatedly photo-degrading MO dyes without losing its photocatalytic activity significantly.


2014 ◽  
Vol 955-959 ◽  
pp. 2267-2275 ◽  
Author(s):  
Rong Liu ◽  
Shi Duo Zhao ◽  
Xue Lin

Ba0.6Mg0.4TiO3 (BMT) particles with different morphologies were synthesized through hydrothermal method and their optical and photocatalytic properties were investigated. Their crystal structure and microstructures were characterized using X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). XRD patterns demonstrate that the as-prepared samples are tetragonal structure. FESEM shows that BMT crystals can be fabricated in different morphologies by simply manipulating the reaction parameters of hydrothermal process. The UV-visible diffuse reflectance spectra (UV-vis DRS) reveal that the band gaps of BMT photocatalysts are about 2.37 - 2.51 eV. The as-prepared BMT photocatalysts exhibite higher photocatalytic activities in the degradation of methyl orange (MO) under visible light irradiation (λ > 420 nm) compared with traditional N-doped TiO2 (N-TiO2) and pure BaTiO3 (BTO). The high photocatalytic performance of BMT photocatalysts could be attributed to the recombination restraint of the e-/h+ pairs resulting from doping of Mg2+ ions. The influence of morphologies upon the photocatalytic properties of BMT was studied. Furthermore, BMT nanowires reveal the highest photocatalytic activity. Up to 94.0% MO is decolorized after visible light irradiation for 360 min.


Materials ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 2589 ◽  
Author(s):  
Evdokia Galata ◽  
Eleni A. Georgakopoulou ◽  
Maria-Emmanouela Kassalia ◽  
Nefeli Papadopoulou-Fermeli ◽  
Evangelia A. Pavlatou

In this study, the synthesis of smart, polymerically embedded titanium dioxide (TiO2) nanoparticles aimed to exhibit photo-induced anticancer properties under visible light irradiation is investigated. The TiO2 nanoparticles were prepared by utilizing the sol gel method with different dopants, including nitrogen (N-doped), iron (Fe-doped), and nitrogen and iron (Fe,N-doped). The dopants were embedded in an interpenetrating (IP) network microgel synthesized by stimuli responsive poly (N-Isopropylacrylamide-co-polyacrylicacid)–pNipam-co-PAA forming composite particles. All the types of produced particles were characterized by X-ray powder diffraction, micro-Raman, Fourier-transform infrared, X-ray photoelectron, ultra-violet-visible spectroscopy, Field Emission Scanning Electron, Transmission Electron microscopy, and Dynamic Light Scattering techniques. The experimental findings indicate that the doped TiO2 nanoparticles were successfully embedded in the microgel. The N-doped TiO2 nano-powders and composite particles exhibit the best photocatalytic degradation of the pollutant methylene blue under visible light irradiation. Similarly, the highly malignant MDA-MB-231 breast cancer epithelial cells were susceptible to the inhibition of cell proliferation at visible light, especially in the presence of N-doped powders and composites, compared to the non-metastatic MCF-7 cells, which were not affected.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Miaomiao Ye ◽  
Yulong Yang ◽  
Yan Zhang ◽  
Tuqiao Zhang ◽  
Weiyun Shao

Hydrangea-like F-doped TiO2microspheres have been synthesized on a large scale by a simple hydrothermal process using potassium titanium oxalate as the titanium source, ammonium fluoride and hydrogen peroxide as the etchant. The photocatalytic activities were evaluated using carbamazepine as the target organic molecule under UV and visible light irradiation. Structural characterization indicates that the hydrangea-like TiO2microspheres, with an average diameter of 2.80 μm, are composed of numerous anatase TiO2petals. Moreover, it is found that both the NH4F and H2O2dosages have important effects on the formation of the hydrangea-like structures. In addition, photocatalytic experiments show that the hydrangea-like TiO2microspheres calcined at 500°C exhibit high photocatalytic efficiency under both UV and visible light irradiation. The enhanced photocatalytic activity can be attributed to the successful fluorine doping, good crystallinity, and the unique nanostructures.


Sign in / Sign up

Export Citation Format

Share Document