scholarly journals Fine-Tuning of Sequence Specificity by Near Attack Conformations in Enzyme-Catalyzed Peptide Hydrolysis

Catalysts ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 684
Author(s):  
S. Kashif Sadiq

The catalytic role of near attack conformations (NACs), molecular states that lie on the pathway between the ground state (GS) and transition state (TS) of a chemical reaction, is not understood completely. Using a computational approach that combines Bürgi–Dunitz theory with all-atom molecular dynamics simulations, the role of NACs in catalyzing the first stages of HIV-1 protease peptide hydrolysis was previously investigated using a substrate that represents the recognized SP1-NC cleavage site of the HIV-1 Gag polyprotein. NACs were found to confer no catalytic effect over the uncatalyzed reaction there ( Δ Δ G N ‡ ∼ 0 kcal/mol). Here, using the same approach, the role of NACs across multiple substrates that each represent a further recognized cleavage site is investigated. Overall rate enhancement varies by | Δ Δ G ‡ | ∼ 12–15 kcal/mol across this set, and although NACs contribute a small and approximately constant barrier to the uncatalyzed reaction (< Δ G N ‡ u > = 4.3 ± 0.3 kcal/mol), they are found to contribute little significant catalytic effect ( | Δ Δ G N ‡ | ∼ 0–2 kcal/mol). Furthermore, no correlation is exhibited between NAC contributions and the overall energy barrier ( R 2 = 0.01). However, these small differences in catalyzed NAC contributions enable rates to match those required for the kinetic order of processing. Therefore, NACs may offer an alternative and subtle mode compared to non-NAC contributions for fine-tuning reaction rates during complex evolutionary sequence selection processes—in this case across cleavable polyproteins whose constituents exhibit multiple functions during the virus life-cycle.

Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1092
Author(s):  
János András Mótyán ◽  
Márió Miczi ◽  
Stephen Oroszlan ◽  
József Tőzsér

To explore the sequence context-dependent nature of the human immunodeficiency virus type 1 (HIV-1) protease’s specificity and to provide a rationale for viral mutagenesis to study the potential role of the nucleocapsid (NC) processing in HIV-1 replication, synthetic oligopeptide substrates representing the wild-type and modified versions of the proximal cleavage site of HIV-1 NC were assayed as substrates of the HIV-1 protease (PR). The S1′ substrate binding site of HIV-1 PR was studied by an in vitro assay using KIVKCF↓NCGK decapeptides having amino acid substitutions of N17 residue of the cleavage site of the first zinc-finger domain, and in silico calculations were also performed to investigate amino acid preferences of S1′ site. Second site substitutions have also been designed to produce “revertant” substrates and convert a non-hydrolysable sequence (having glycine in place of N17) to a substrate. The specificity constants obtained for peptides containing non-charged P1′ substitutions correlated well with the residue volume, while the correlation with the calculated interaction energies showed the importance of hydrophobicity: interaction energies with polar residues were related to substantially lower specificity constants. Cleavable “revertants” showed one residue shift of cleavage position due to an alternative productive binding mode, and surprisingly, a double cleavage of a substrate was also observed. The results revealed the importance of alternative binding possibilities of substrates into the HIV-1 PR. The introduction of the “revertant” mutations into infectious virus clones may provide further insights into the potential role of NC processing in the early phase of the viral life-cycle.


2021 ◽  
Author(s):  
Yann Breton ◽  
Corinne Barat ◽  
Michel J. Tremblay

Several host factors influence HIV-1 infection and replication. The p53-mediated antiviral role in monocytes-derived macrophages (MDMs) was previously highlighted. Indeed, an increase in p53 level results in a stronger restriction against HIV-1 early replication steps through SAMHD1 activity. In this study, we investigated the potential role of some p53 isoforms in HIV-1 infection. Transfection of isoform-specific siRNA induces distinctive effects on the virus life cycle. For example, in contrast to a siRNA targeting all isoforms, a knockdown of Δ133p53 transcripts reduces virus replication in MDMs that is correlated with a decrease in phosphorylated inactive SAMHD1. Combination of Δ133p53 knockdown and Nutlin-3, a pharmacological inhibitor of MDM2 that stabilizes p53, further reduces susceptibility of MDMs to HIV-1 infection, thus suggesting an inhibitory role of Δ133p53 towards p53 antiviral activity. In contrast, p53β knockdown in MDMs increases the viral production independently of SAMHD1. Moreover, experiments with a Nef-deficient virus show that this viral protein plays a protective role against the antiviral environment mediated by p53. Finally, HIV-1 infection affects the expression pattern of p53 isoforms by increasing p53β and p53γ mRNA levels while stabilizing the protein level of p53α and some isoforms from the p53β subclass. The balance between the various p53 isoforms is therefore an important factor in the overall susceptibility of macrophages to HIV-1 infection, fine-tuning the p53 response against HIV-1. This study brings a new understanding of the complex role of p53 in virus replication processes in myeloid cells. Importance As of today, HIV-1 is still considered as a global pandemic without a functional cure, partly because of the presence of stable viral reservoirs. Macrophages constitute one of these cell reservoirs, contributing to the viral persistence. Studies investigating the host factors involved in cell susceptibility to HIV-1 infection might lead to a better understanding of the reservoir formation and will eventually allow the development of an efficient cure. Our team previously showed the antiviral role of p53 in macrophages, which acts by compromising the early steps of HIV-1 replication. In this study, we demonstrate the involvement of p53 isoforms, which regulates p53 activity and define the cellular environment influencing viral replication. In addition, the results concerning the potential role of p53 in antiviral innate immunity could be transposed to other fields of virology and suggest that knowledge in oncology can be applied to HIV-1 research.


ChemBioChem ◽  
2004 ◽  
Vol 5 (12) ◽  
pp. 1653-1661 ◽  
Author(s):  
Lucia Falcigno ◽  
Romina Oliva ◽  
Gabriella D'Auria ◽  
Massimiliano Maletta ◽  
Monica Dettin ◽  
...  

2018 ◽  
Vol 5 (9) ◽  
pp. 180717 ◽  
Author(s):  
Yanpeng Ban ◽  
Yan Wang ◽  
Na Li ◽  
Runxia He ◽  
Keduan Zhi ◽  
...  

The CO 2 gasification of Chinese Shengli lignite (SL) catalysed by K + and Ca 2+ was studied. The results showed that calcium could greatly decrease the gasification reaction temperature of SL, and the gasification reaction rates of acid-treated SL catalysed by calcium were significantly higher than that catalysed by potassium. Kinetic analysis showed that the activation energy of the reaction catalysed by calcium was much lower than that catalysed by potassium, which was the reason for the higher catalytic activity of calcium. Fourier transform infrared characterization showed that, compared with acid-treated SL, the addition of K + /Ca 2+ resulted in the significant weakening of C=O bond, and new peaks attributed to carboxylate species appeared. X-ray photoelectron spectroscopy results indicated that the numbers of C=O decreased after the metal ions were added, indicating the formation of metal–carboxylate complexes. Raman characterization showed that the I D1 / I G values increased, suggesting more structural defects, which indicated that the reactivity of coal samples had a close relation with amorphous carbon structures. Ca 2+ could interact with the carboxyl structure in lignite by both ionic forces and polycarboxylic coordination, while K + interacted with carboxyl structure mainly via ionic forces.


2013 ◽  
Vol 13 (16) ◽  
pp. 1907-1915 ◽  
Author(s):  
Bart Hoorelbeke ◽  
Youngju Kim ◽  
Toshikazu Oki ◽  
Yasuhiro Igarashi ◽  
Jan Balzarini
Keyword(s):  
Hiv 1 ◽  

Sign in / Sign up

Export Citation Format

Share Document