scholarly journals Hole Doping to Enhance the Photocatalytic Activity of Bi4NbO8Cl

Catalysts ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1425 ◽  
Author(s):  
Jingbang Sun ◽  
Ni Han ◽  
Yan Gu ◽  
Xiaowang Lu ◽  
Liang Si ◽  
...  

An increase of carrier concentration is one of the most important routes for enhancing the catalytic performance of semiconductor photocatalysts. In this study, the Sillén–Aurivillius oxychloride Bi4NbO8Cl with hole doping was successfully prepared by a solid-state reaction method. X-ray powder diffraction (XRD), scanning electron microscopy (SEM), ultraviolet–visible diffuse reflectance spectra (UV–vis DRS), X-ray photoelectron spectrometry (XPS) and photoluminescence spectra (PL) were used to characterize and analyze the prepared samples. The experimental results and density functional theory calculations demonstrate that hole doping can be formed in Bi4NbO8Cl by inserting zinc into the niobium site, and the photocatalytic activity can be improved by introducing additional holes into Bi4NbO8Cl. The photogenerated hole (h+) is considered to be the main active species to degrade trypan blue (TB) through trapping experiments. The optimal photocatalyst of Bi4Nb0.8Zn0.2O8Cl exhibits excellent photocatalytic activity in degradation of trypan blue under visible light irritation. Moreover, a possible photocatalytic degradation mechanism is discussed according the experimental and analytical results.

2021 ◽  
Vol 60 (8) ◽  
pp. 6016-6026
Author(s):  
Aydar Rakhmatullin ◽  
Maxim S. Molokeev ◽  
Graham King ◽  
Ilya B. Polovov ◽  
Konstantin V. Maksimtsev ◽  
...  

2019 ◽  
Vol 21 (46) ◽  
pp. 25743-25748
Author(s):  
Yong-Chao Rao ◽  
Xiang-Mei Duan

The catalytic performance of Pd/Pt embedded planar carbon nitride for CO oxidation has been investigated via spin-polarized density functional theory calculations.


2016 ◽  
Vol 49 (2) ◽  
pp. 385-388 ◽  
Author(s):  
Kanokwan Kanchiang ◽  
Atipong Bootchanont ◽  
Janyaporn Witthayarat ◽  
Sittichain Pramchu ◽  
Panjawan Thanasuthipitak ◽  
...  

Chrysoberyl is one of the most interesting minerals for laser applications, widely used for medical purposes, as it exhibits higher laser performance than other materials. Although its utilization has been vastly expanded, the location of transition metal impurities, especially the iron that is responsible for chrysoberyl's special optical properties, is not completely understood. The full understanding and control of these optical properties necessitates knowledge of the precise location of the transition metals inside the structure. Therefore, synchrotron X-ray absorption spectroscopy (XAS), a local structural probe sensitive to the different local geometries, was employed in this work to determine the site occupation of the Fe3+ cation in the chrysoberyl structure. An Fe K-edge X-ray absorption near-edge structure (XANES) simulation was performed in combination with density functional theory calculations of Fe3+ cations located at different locations in the chrysoberyl structure. The simulated spectra were then qualitatively compared with the measured XANES features. The comparison indicates that Fe3+ is substituted on the two different Al2+ octahedral sites with the proportion 60% on the inversion site and 40% on the reflection site. The accurate site distribution of Fe3+ obtained from this work provides useful information on the doping process for improving the efficiency of chrysoberyl as a solid-state laser material.


2019 ◽  
Vol 6 (9) ◽  
pp. 191019 ◽  
Author(s):  
Shang Wang ◽  
Zhaolian Han ◽  
Tingting Di ◽  
Rui Li ◽  
Siyuan Liu ◽  
...  

The pod-shaped TiO 2 nano burst tubes (TiO 2 NBTs) were prepared by the combination of electrospinning and impregnation calcination with oxalic acid (H 2 C 2 O 4 ), polystyrene (PS) and tetrabutyl titanate. The silver nanoparticles (AgNPs) were loaded onto the surface of TiO 2 NBTs by ultraviolet light reduction method to prepare pod-shaped Ag@TiO 2 NBTs. In this work, we analysed the effect of the amount of oxalic acid on the cracking degree of TiO 2 NBTs; the effect of the concentration of AgNO 3 solution on the particle size and loading of AgNPs on the surface of TiO 2 NBTs. Scanning electron microscopy and transmission electron microscopy investigated the surface morphology of samples. X-ray diffraction and X-ray photoelectron spectroscopy characterized the structure and composition of samples. Rhodamine B (RhB) solution was used to evaluate the photocatalytic activity of pod-shaped TiO 2 NBTs and Ag@TiO 2 NBTs. The results showed that TiO 2 NBTs degraded 91.0% of RhB under ultraviolet light, Ag@TiO 2 NBTs degraded 95.5% under visible light for 75 and 60 min, respectively. The degradation process of both samples was consistent with the Langmuir–Hinshelwood first-order kinetic equation. Therefore, the catalytic performance of the sample is: Ag@TiO 2 NBTs > TiO 2 NBTs > TiO 2 nanotubes.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Xiuping Han ◽  
Binghua Yao ◽  
Keying Li ◽  
Wenjing Zhu ◽  
Xuyuan Zhang

The use of sunlight for photocatalytic oxidation is an ideal strategy, but it is limited by factors such as insufficient light absorption intensity of the photocatalyst and easy recombination of photogenerated electron holes. TiO2 is favored by researchers as an environment-friendly catalyst. In this paper, TiO2 is combined with WO3 to obtain a nanofiber with excellent catalytic performance under sunlight. The WO3/TiO2 composite nanofibers were synthesized by using the electrospinning method. The X-ray diffraction (XRD) analysis indicated that WO3 was successfully integrated onto the surface of TiO2. The photodegradation performance and photocurrent analysis of the prepared nanofibers showed that the addition of WO3 really improved the photocatalytic performance of TiO2 nanofibers, methylene blue (MB) degradation rate increased from 72% to 96%, and 5% was the optimal composite mole percentage of W to Ti. The scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), UV-Vis diffuse reflectance spectra (UV-Vis DRS), and Brunauer-Emmett-Teller (BET) analysis further characterized the properties of 5% WO3/TiO2 nanofibers. The H2 generation rate of 5% WO3/TiO2 nanofibers was 107.15 μmol·g−1·h−1, in comparison with that of TiO2 nanofibers (73.21 μmol·g−1·h−1) under the same condition. The 5% WO3/TiO2 produced ·OH under illumination, which played an important role in the MB degradation. Also, the enhanced photocatalytic mechanism was also proposed based on the detailed analysis of the band gap and the active species trapping experiment. The results indicated that the effective separation of Z-scheme photogenerated electron-hole pairs and transfer system constructed between TiO2 and WO3 endowed the excellent photocatalytic activity of 5% WO3/TiO2 nanofibers.


Molecules ◽  
2020 ◽  
Vol 25 (2) ◽  
pp. 273 ◽  
Author(s):  
Sudheer S. Kurup ◽  
Richard J. Staples ◽  
Richard L. Lord ◽  
Stanislav Groysman

Synthesis of new chromium(II) complexes with chelating bis(alkoxide) ligand [OO]Ph (H2[OO]Ph = [1,1′:4′,1′’-terphenyl]-2,2′’-diylbis(diphenylmethanol)) and their subsequent reactivity in the context of catalytic production of carbodiimides from azides and isocyanides are described. Two different Cr(II) complexes are obtained, as a function of the crystallization solvent: mononuclear Cr[OO]Ph(THF)2 (in toluene/THF, THF = tetrahydrofuran) and dinuclear Cr2([OO]Ph)2 (in CH2Cl2/THF). The electronic structure and bonding in Cr[OO]Ph(THF)2 were probed by density functional theory calculations. Isolated Cr2([OO]Ph)2 undergoes facile reaction with 4-MeC6H4N3, 4-MeOC6H4N3, or 3,5-Me2C6H3N3 to yield diamagnetic Cr(VI) bis(imido) complexes; a structure of Cr[OO]Ph(N(4-MeC6H4))2 was confirmed by X-ray crystallography. The reaction of Cr2([OO]Ph)2 with bulkier azides N3R (MesN3, AdN3) forms paramagnetic products, formulated as Cr[OO]Ph(NR). The attempted formation of a Cr–alkylidene complex (using N2CPh2) instead forms chromium(VI) bis(diphenylmethylenehydrazido) complex Cr[OO]Ph(NNCPh2)2. Catalytic formation of carbodiimides was investigated for the azide/isocyanide mixtures containing various aryl azides and isocyanides. The formation of carbodiimides was found to depend on the nature of organoazide: whereas bulky mesitylazide led to the formation of carbodiimides with all isocyanides, no carbodiimide formation was observed for 3,5-dimethylphenylazide or 4-methylphenylazide. Treatment of Cr2([OO]Ph)2 or H2[OO]Ph with NO+ leads to the formation of [1,2-b]-dihydroindenofluorene, likely obtained via carbocation-mediated cyclization of the ligand.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4326
Author(s):  
Fan Yang ◽  
Ruizhuang Yang ◽  
Lin Yan ◽  
Jiankun Wu ◽  
Xiaolin Liu ◽  
...  

Vacancies in semiconductors can play a versatile role in boosting their photocatalytic activity. In this work, a novel TiO2/Cu/TiO2 sandwich structure is designed and constructed. Abundant vacancies were introduced in TiO2 lattice by Cu reduction under heat treatment. Meanwhile, Cu atom could diffuse into TiO2 to form Cu-doped TiO2. The synergistic effect between oxygen vacancies and Cu atoms achieved about 2.4 times improved photocurrent of TiO2/Cu/TiO2 sandwich structure compared to bare TiO2 thin film. The enhanced photoactivity may be attributed to regulated electron structure of TiO2 by oxygen vacancies and Cu dopant from experimental results and density functional theory calculations. Oxygen vacancies and Cu dopant in TiO2 formed through copper metal reduction can introduce impurity levels and narrow the band gap of TiO2, thus improve the visible light response. More importantly, the Cu2+ and oxygen vacancies in TiO2 lattice can dramatically increase the charge density around conduction band and promote separation of photo-induced charge carriers. Furthermore, the oxygen vacancies on the surface may serve as active site for sufficient chemical reaction. This work presents a novel method to prepare doped metal oxides catalysts with abundant vacancies for improving photocatalytic activity.


Computation ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 52
Author(s):  
Jerwin Jay E. Taping ◽  
Junie B. Billones ◽  
Voltaire G. Organo

Nickel(II) complexes of mono-functionalized pyridine-tetraazamacrocycles (PyMACs) are a new class of catalysts that possess promising activity similar to biological peroxidases. Experimental studies with ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), substrate) and H2O2 (oxidant) proposed that hydrogen-bonding and proton-transfer reactions facilitated by their pendant arm were responsible for their catalytic activity. In this work, density functional theory calculations were performed to unravel the influence of pendant arm functionalization on the catalytic performance of Ni(II)–PyMACs. Generated frontier orbitals suggested that Ni(II)–PyMACs activate H2O2 by satisfying two requirements: (1) the deprotonation of H2O2 to form the highly nucleophilic HOO−, and (2) the generation of low-spin, singlet state Ni(II)–PyMACs to allow the binding of HOO−. COSMO solvation-based energies revealed that the O–O Ni(II)–hydroperoxo bond, regardless of pendant arm type, ruptures favorably via heterolysis to produce high-spin (S = 1) [(L)Ni3+–O·]2+ and HO−. Aqueous solvation was found crucial in the stabilization of charged species, thereby favoring the heterolytic process over homolytic. The redox reaction of [(L)Ni3+–O·]2+ with ABTS obeyed a 1:2 stoichiometric ratio, followed by proton transfer to produce the final intermediate. The regeneration of Ni(II)–PyMACs at the final step involved the liberation of HO−, which was highly favorable when protons were readily available or when the pKa of the pendant arm was low.


2020 ◽  
Vol 6 (25) ◽  
pp. eaaz2060 ◽  
Author(s):  
Shanshan Dang ◽  
Bin Qin ◽  
Yong Yang ◽  
Hui Wang ◽  
Jun Cai ◽  
...  

Renewable energy-driven methanol synthesis from CO2 and green hydrogen is a viable and key process in both the “methanol economy” and “liquid sunshine” visions. Recently, In2O3-based catalysts have shown great promise in overcoming the disadvantages of traditional Cu-based catalysts. Here, we report a successful case of theory-guided rational design of a much higher performance In2O3 nanocatalyst. Density functional theory calculations of CO2 hydrogenation pathways over stable facets of cubic and hexagonal In2O3 predict the hexagonal In2O3(104) surface to have far superior catalytic performance. This promotes the synthesis and evaluation of In2O3 in pure phases with different morphologies. Confirming our theoretical prediction, a novel hexagonal In2O3 nanomaterial with high proportion of the exposed {104} surface exhibits the highest activity and methanol selectivity with high catalytic stability. The synergy between theory and experiment proves highly effective in the rational design and experimental realization of oxide catalysts for industry-relevant reactions.


Sign in / Sign up

Export Citation Format

Share Document