scholarly journals Facile Aqueous-Phase Synthesis of Stabilizer-Free Photocatalytic Nanoparticles

Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 111
Author(s):  
Hyein Lee ◽  
Sung-Soo Kim ◽  
Suk Ho Bhang ◽  
Taekyung Yu

One of the challenges of using nanoparticles as catalysts is the presence of reaction-disturbing stabilizers that surround the nanoparticle surface. In this report, we demonstrate a method to synthesize stabilizer-free bismuth oxychloride (BiOCl) nanoparticles to increase photocatalytic activity. This synthesis method is remarkably simple, involving only BiCl3 and deionized water. After heating an aqueous solution containing BiCl3, plate-shaped BiOCl nanoparticles were formed. The stabilizer-free BiOCl nanoplates exhibited higher photocatalytic activities compared to polyvinylpyrrolidone- and polyethyleneimine-stabilized nanoplates for the degradation of methylene blue.

2013 ◽  
Vol 726-731 ◽  
pp. 429-434
Author(s):  
Wei Wang ◽  
Chun Hua Lu ◽  
Ya Ru Ni ◽  
Zhong Zi Xu

Anatase TiO2 nanosheets with different percentage of exposed high-reactive {001} facets were synthesized successfully. Besides the FESEM and TEM anslysis, XRD, Raman, and PL analysis were also conducted systematically to give a new insight on analyzing the as-prepared {001} facets dominated TiO2 photocatalysts. Photocatalytic activities of the photocatalysts were tested by the degradation of methylene blue (MB) aqueous solution under UV irradiation. The results indicated that there was an optimal percentage of the exposed {001} facets existed to give the highest photocatalytic activity of as-prepared TiO2 nanosheets. A possible mechanism for the enhanced photocatalytic activity of the {001} facets dominated anatase TiO2 was also proposed.


2014 ◽  
Vol 699 ◽  
pp. 53-58
Author(s):  
Zatil Amali Che Ramli ◽  
Wan Nor Roslam Wan Isahak ◽  
Mohd Ambar Yarmo ◽  
Nilofar Asim

In this paper the photocatalytic activity of TiO2-PANi nanocomposites prepared using two differentIn-situpolymerization methods have been investigated. The same pressure, temperature, precursors, mole ratio, and solvent have been employed for preparation of nanocomposites. The synthesized nanocomposites were characterized by FESEM, XRD and FTIR. Results revealed the successful preparation of TiO2- PANI nanocomposites. TiO2-PANi nanocomposite synthesized using method 2 showed very well dispersed TiO2nanoparticles on the surface of PANi. There is no agglomeration of TiO2nanoparticles in PANi matrix. The photocatalytic activities of nanocomposites were evaluated by using photo degradation of Methylene Blue (MB) in aqueous solution under UV irradiation. These nanocomposites exhibit much higher photocatalytic activity compared with TiO2.


2011 ◽  
Vol 194-196 ◽  
pp. 385-388
Author(s):  
Hong Juan Wang ◽  
Feng Qiang Sun ◽  
Ming Zhong Ren ◽  
Qing Wei Guo

Nanoporous SnO2with high photocatalytic activity has been successfully prepared by a photochemical method, using SnCl2aqueous solution as a precursor. The as-synthesized sample was characterized by XRD, N2 adsorption-desorption and UV-vis. The photocatalytic activity of the sample was evaluated by degrading methylene blue (MB) aqueous solution under the UV light source and was compared with that of the commercial titania (Degussa P25). The results showed that the produced SnO2can degrade MB solution quickly and has comparative photocatalytic performance with P25 for degrading MB. This facile method supplies an effective way to prepare SnO2photocatalyst.


2018 ◽  
Vol 47 (48) ◽  
pp. 17342-17348 ◽  
Author(s):  
Euiyoung Jung ◽  
Jae Kyeom Kim ◽  
Hyungsuk Choi ◽  
Min Hyung Lee ◽  
Taekyung Yu

Transition metal LDH nanoplates were synthesized by heating an aqueous solution containing a metal salt, PEG, and octylamine. The LDH nanoplates showed comparable electrochemical catalytic performance for the oxygen evolution reaction.


2006 ◽  
Vol 317-318 ◽  
pp. 819-822
Author(s):  
Jun Hu Wang ◽  
Toru Nonami

In the present study, Pt, NiO, and RuO2 fine particles as co-catalyst were loaded on the LiInO2 surface by different methods for enhancing its adsorption capability and photocatalytic activity for methylene blue dye (MB) decomposition. Clear adsorption capability and marked photocatalytic activity for MB decomposition were confirmed on the co-catalyst loaded LiInO2 composite particles. Comparing with that of LiINO2, the previously reported NaInO2 photocatalyst had stronger adsorption capability and higher photocatalytic activity. However, the adsorption capabilities and the photocatalytic activities were separately in the same order of RuO2/AInO2 > Pt/AInO2 > AInO2 > NiO/AInO2 and Pt/LiInO2 > RuO2/LiInO2 > NiO/LiInO2 > LiInO2 for the two promising AInO2 (A = Li+ or Na+) photocatalyst.


2014 ◽  
Vol 881-883 ◽  
pp. 177-180
Author(s):  
Guo Cong Liu ◽  
Shi Hua Xu ◽  
Yin Jian Liang

Novel La-doped BiVO4microcakes have been hydrothermally synthesized and characterized by XRD, XPS, SEM, and DRS techniques.The results reveal that the well crystallized and cake-like Bi0.95La0.05VO4monoclinic crystal with the diameter range of 15 μm and the width range of 0.2-0.8 μm can be obtained via a template-free hydrothermal route. Compared with pure BiVO4microcakes, Bi0.95La0.05VO4microcake shows a little red shift in the absorption band, resulting in a narrowed band gap (2.37 eV), which has the better photocatalytic activity with a 98.6 % degradation of methylene blue (MB) with a concentration of 10 mg/L under visible-light irradiation for 60 min.


2015 ◽  
Vol 1118 ◽  
pp. 211-216
Author(s):  
Yuan Liang Ma ◽  
Xue Rong Zheng ◽  
Wei Liu ◽  
Hai Qin Li ◽  
Hui Ming Ji

Pure phase of Yb3+/Er3+ co-doped β-NaYF4 micron tubes with up-conversion fluorescence were synthesized by hydrothermal method at 180°C for 24 hours. For better utilization of sunlight and improving photocatalytic efficiency of organic dyes, TiO2 nanoparticles were modified by combining with β-NaYF4 micron tubes to form TiO2/NaYF4 composite. Three different combination methods were studied and the photocatalytic activities of the corresponding samples were tested by measuring the degradation rate of rhodamine aqueous solution under illumination of simulated sunlight. The composite that TiO2 nanoparticles were well dispersed on the surface of NaYF4 shows better photocatalytic activity than other composites and was near twice efficiency of pure TiO2 nanoparticles. The reason may be due to the high activity of heterostructure for TiO2/NaYF4 composite that will make it easy for sunlight absorption and photocatalytic degradation.


RSC Advances ◽  
2016 ◽  
Vol 6 (51) ◽  
pp. 45617-45623 ◽  
Author(s):  
Hua Xu ◽  
Jian Xin Xiang ◽  
Pin Wu ◽  
Yi Fei Lu ◽  
Shuai Zhang ◽  
...  

Wrinkled graphene hybrids were controllable prepared and exhibit enhanced photocatalytic activity in the degradation of methylene blue under visible light.


2020 ◽  
Vol 6 (1) ◽  
pp. 1-9
Author(s):  
Febiyanto Febiyanto ◽  
Uyi Sulaeman

Synthesis of Ag3PO4 photocatalyst under the varied concentrations of AgNO3 and Na2HPO4·12H2O as starting material has been successfully synthesized using the co-precipitation method. The concentration of AgNO3 is 0.1; 0.5; 1.0; and 2.0 M, whereas Na2HPO4·12H2O is 0.03; 0.17; 0.33; and 0.67 M, respectively. The co-precipitations were carried out under aqueous solution. As-synthesized photocatalysts were examined to degrade Rhodamine B (RhB) under blue light irradiation. The results showed that varying concentrations of starting materials affect the photocatalytic activities, the intensity ratio of [110]/[200] facet plane, and their bandgap energies of Ag3PO4 photocatalyst. The highest photocatalytic activity of the sample was obtained by synthesized using the 1.0 M of AgNO3 and 0.33 M of Na2HPO4·12H2O (AP-1.0). This is due to the high [110] facet plane and increased absorption along the visible region of AP-1.0 photocatalyst. Therefore, this result could be a consideration for the improvement of Ag3PO4 photocatalyst.


2019 ◽  
Vol 25 (8) ◽  
pp. 129-148
Author(s):  
Rafie Rushdy Mohammed

In this study, composite materials consisting of Activated Carbon (AC) and Zeolite were prepared for application in the removal of methylene blue and lead from an aqueous solution. The optimum synthesis method involves the use of metakaolinization and zeolitization, in the presence of activated carbon from kaolin, to form Zeolite. First, Kaolin was thermally activated into amorphous kaolin (metakaolinization); then the resultant metakaolin was attacked by alkaline, transforming it into crystalline zeolite (zeolitization). Using nitrogen adsorption and SEM techniques, the examination and characterization of composite materials confirmed the presence of a homogenous distribution of Zeolite throughout the activated carbon. It has also shown the carbonization process did not destroy the crystalline structure of the zeolite, which was revealed to be intact. Experiments in batch mode were conducted (using three differently-prepared composites, zeolite and activated carbon), to investigate the removal of methylene blue and lead from the aqueous solution of the sorbents. Key experimental parameters (initial concentration, pH, contact time and adsorbent dosage) from the obtained results were measured and analysed. Freundlich and Langmuir models were used to describe the adsorption isotherms, and the observed adsorption kinetic adhered to pseudo-second order.  


Sign in / Sign up

Export Citation Format

Share Document