Preparation and Analysis of Anatase TiO2 Nanosheets with an Optimal Percentage of {001} Facets for High Efficient Photocatalyst

2013 ◽  
Vol 726-731 ◽  
pp. 429-434
Author(s):  
Wei Wang ◽  
Chun Hua Lu ◽  
Ya Ru Ni ◽  
Zhong Zi Xu

Anatase TiO2 nanosheets with different percentage of exposed high-reactive {001} facets were synthesized successfully. Besides the FESEM and TEM anslysis, XRD, Raman, and PL analysis were also conducted systematically to give a new insight on analyzing the as-prepared {001} facets dominated TiO2 photocatalysts. Photocatalytic activities of the photocatalysts were tested by the degradation of methylene blue (MB) aqueous solution under UV irradiation. The results indicated that there was an optimal percentage of the exposed {001} facets existed to give the highest photocatalytic activity of as-prepared TiO2 nanosheets. A possible mechanism for the enhanced photocatalytic activity of the {001} facets dominated anatase TiO2 was also proposed.

2014 ◽  
Vol 699 ◽  
pp. 53-58
Author(s):  
Zatil Amali Che Ramli ◽  
Wan Nor Roslam Wan Isahak ◽  
Mohd Ambar Yarmo ◽  
Nilofar Asim

In this paper the photocatalytic activity of TiO2-PANi nanocomposites prepared using two differentIn-situpolymerization methods have been investigated. The same pressure, temperature, precursors, mole ratio, and solvent have been employed for preparation of nanocomposites. The synthesized nanocomposites were characterized by FESEM, XRD and FTIR. Results revealed the successful preparation of TiO2- PANI nanocomposites. TiO2-PANi nanocomposite synthesized using method 2 showed very well dispersed TiO2nanoparticles on the surface of PANi. There is no agglomeration of TiO2nanoparticles in PANi matrix. The photocatalytic activities of nanocomposites were evaluated by using photo degradation of Methylene Blue (MB) in aqueous solution under UV irradiation. These nanocomposites exhibit much higher photocatalytic activity compared with TiO2.


2018 ◽  
Vol 149 ◽  
pp. 01087 ◽  
Author(s):  
F. Amor ◽  
A. Diouri ◽  
I. Ellouzi ◽  
F. Ouanji ◽  
M. Kacimi

This work establishes a simple method for synthesising layered double hydroxides (LDHs) powders with coprecipitation. The characteristics of the samples were investigated y X-ray diffraction (XRD), scanning electron microscopy (SEM) and spectrophotometer UV–Vis (DRS). Non-uniform distribution was shown for LDHs samples by SEM. Photocatalytic efficiencies were tested using methylene blue (MB) dye as a model contaminant under UV irradiation. In particular, Zn–Al-Ti LDH exhibited an excellent performance towards MB degradation compared with commercial TiO2 nanoparticles. Methylene blue removal percentage was reached at almost 100%, whereas commercial TiO2 reached a removal rate of only 66% under the same conditions within 20 min. The aim of the current work is to prepare Zn-Al-Ti layered double hydroxides nanocomposite and to evaluate their photocatalytic activity in the removal of methylene blue under UV irradiation.


2014 ◽  
Vol 979 ◽  
pp. 90-93 ◽  
Author(s):  
Weerachai Sangchay ◽  
Tanarat Rattanakool

The pure TiO2and SnO2-TiO2thin films on glass substrate were fabricated using a sol-gel dip coating technique. The thin films were annealed at the temperature of 700 °C for 2 h with the heating rate of 10 °C/min. The microstructures of the fabricated thin films were characterized by SEM and XRD techniques. The photocatalytic activities of the thin films were also tested by the degradation of methylene blue (MB) solution under UV irradiation. Finally, hydrophilic or self-cleaning properties of thin films were evaluated by measuring the contact angle of water droplet on the thin films with and without UV irradiation. It was found that 1 %mol SnO2-TiO2thin films shows the highest of photocatalytic activity and provide the most self-cleaning properties.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
I. Abdul Rahman ◽  
M. T. M. Ayob ◽  
S. Radiman

ZnO nanowhiskers were used for photodecomposition of methylene blue in aqueous solution under UV irradiation. The rate of methylene blue degradation increased linearly with time of UV irradiation. 54% of degradation rate was observed when the ZnO nanowhiskers were used as photocatalysts for methylene blue degradation for 80 min under UV irradiation. The decoration of p-type NiO nanoparticles on n-type ZnO nanowhiskers significantly enhanced photocatalytic activity and reached 72% degradation rate of methylene blue by using the same method. NiO-decorated ZnO was recycled for second test and shows 66% degradation from maximal peak of methylene blue within the same period. The increment of photocatalytic activity of NiO-decorated ZnO nanowhiskers was explained by the extension of the electron depletion layer due to the formation of nanoscale p-n junctions between p-type NiO and n-type ZnO. Hence, these products provide new alternative proficient photocatalysts for wastewater treatment.


Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 111
Author(s):  
Hyein Lee ◽  
Sung-Soo Kim ◽  
Suk Ho Bhang ◽  
Taekyung Yu

One of the challenges of using nanoparticles as catalysts is the presence of reaction-disturbing stabilizers that surround the nanoparticle surface. In this report, we demonstrate a method to synthesize stabilizer-free bismuth oxychloride (BiOCl) nanoparticles to increase photocatalytic activity. This synthesis method is remarkably simple, involving only BiCl3 and deionized water. After heating an aqueous solution containing BiCl3, plate-shaped BiOCl nanoparticles were formed. The stabilizer-free BiOCl nanoplates exhibited higher photocatalytic activities compared to polyvinylpyrrolidone- and polyethyleneimine-stabilized nanoplates for the degradation of methylene blue.


2011 ◽  
Vol 194-196 ◽  
pp. 385-388
Author(s):  
Hong Juan Wang ◽  
Feng Qiang Sun ◽  
Ming Zhong Ren ◽  
Qing Wei Guo

Nanoporous SnO2with high photocatalytic activity has been successfully prepared by a photochemical method, using SnCl2aqueous solution as a precursor. The as-synthesized sample was characterized by XRD, N2 adsorption-desorption and UV-vis. The photocatalytic activity of the sample was evaluated by degrading methylene blue (MB) aqueous solution under the UV light source and was compared with that of the commercial titania (Degussa P25). The results showed that the produced SnO2can degrade MB solution quickly and has comparative photocatalytic performance with P25 for degrading MB. This facile method supplies an effective way to prepare SnO2photocatalyst.


2006 ◽  
Vol 317-318 ◽  
pp. 819-822
Author(s):  
Jun Hu Wang ◽  
Toru Nonami

In the present study, Pt, NiO, and RuO2 fine particles as co-catalyst were loaded on the LiInO2 surface by different methods for enhancing its adsorption capability and photocatalytic activity for methylene blue dye (MB) decomposition. Clear adsorption capability and marked photocatalytic activity for MB decomposition were confirmed on the co-catalyst loaded LiInO2 composite particles. Comparing with that of LiINO2, the previously reported NaInO2 photocatalyst had stronger adsorption capability and higher photocatalytic activity. However, the adsorption capabilities and the photocatalytic activities were separately in the same order of RuO2/AInO2 > Pt/AInO2 > AInO2 > NiO/AInO2 and Pt/LiInO2 > RuO2/LiInO2 > NiO/LiInO2 > LiInO2 for the two promising AInO2 (A = Li+ or Na+) photocatalyst.


2020 ◽  
Vol 998 ◽  
pp. 78-83
Author(s):  
Yi Yi Zaw ◽  
Du Ang Dao Channei ◽  
Thotsaphon Threrujirapapong ◽  
Wilawan Khanitchaidecha ◽  
Auppatham Nakaruk

Titanium dioxide (TiO2) is known as one of the widely used catalysts in photocatalysis process. Recently, the photocatalysis of TiO2 has been implied in water purification and treatment, particularly dyes and organic compounds degradations. Naturally, the TiO2 can be found in three phases including anatase, rutile and brookite; each phase has its own specific properties such as grain size, stability and band gap energy. In this work, the effect of calcination temperature on the structure, morphology and photocatalytic activity were investigated. The data suggested that the anatase/rutile ratio of TiO2 can be controlled through the calcination process. The phase transformation data strongly indicated the liner function between percentage of rutile phase and calcination temperature. The BET analysis provided the consistent data with XRD patterns by showing that the specific surface area was decreased by increasing calcination temperature. The photodegradation of methylene blue under UV irradiation proved that the mixed phase of anatase/rutile ratio at 78.5/21.5 provided the highest photocatalytic activity. The phase composition ratio can influence the nanoparticles properties including band gap, specific surface area and energy band structure. Therefore, the control of anatase/rutile ratio was an alternative to enhance the photocatalytic activity of TiO2 nanoparticles for dyes and organic compounds degradations.


2014 ◽  
Vol 881-883 ◽  
pp. 177-180
Author(s):  
Guo Cong Liu ◽  
Shi Hua Xu ◽  
Yin Jian Liang

Novel La-doped BiVO4microcakes have been hydrothermally synthesized and characterized by XRD, XPS, SEM, and DRS techniques.The results reveal that the well crystallized and cake-like Bi0.95La0.05VO4monoclinic crystal with the diameter range of 15 μm and the width range of 0.2-0.8 μm can be obtained via a template-free hydrothermal route. Compared with pure BiVO4microcakes, Bi0.95La0.05VO4microcake shows a little red shift in the absorption band, resulting in a narrowed band gap (2.37 eV), which has the better photocatalytic activity with a 98.6 % degradation of methylene blue (MB) with a concentration of 10 mg/L under visible-light irradiation for 60 min.


Sign in / Sign up

Export Citation Format

Share Document