scholarly journals The Starting Material Concentration Dependence of Ag3PO4 Synthesis for Rhodamine B Photodegradation under Visible Light Irradiation

2020 ◽  
Vol 6 (1) ◽  
pp. 1-9
Author(s):  
Febiyanto Febiyanto ◽  
Uyi Sulaeman

Synthesis of Ag3PO4 photocatalyst under the varied concentrations of AgNO3 and Na2HPO4·12H2O as starting material has been successfully synthesized using the co-precipitation method. The concentration of AgNO3 is 0.1; 0.5; 1.0; and 2.0 M, whereas Na2HPO4·12H2O is 0.03; 0.17; 0.33; and 0.67 M, respectively. The co-precipitations were carried out under aqueous solution. As-synthesized photocatalysts were examined to degrade Rhodamine B (RhB) under blue light irradiation. The results showed that varying concentrations of starting materials affect the photocatalytic activities, the intensity ratio of [110]/[200] facet plane, and their bandgap energies of Ag3PO4 photocatalyst. The highest photocatalytic activity of the sample was obtained by synthesized using the 1.0 M of AgNO3 and 0.33 M of Na2HPO4·12H2O (AP-1.0). This is due to the high [110] facet plane and increased absorption along the visible region of AP-1.0 photocatalyst. Therefore, this result could be a consideration for the improvement of Ag3PO4 photocatalyst.

2015 ◽  
Vol 1112 ◽  
pp. 158-162
Author(s):  
Anung Riapanitra ◽  
Intan Futihah ◽  
Uyi Sulaeman ◽  
Shu Yin ◽  
Tsugio Sato

The Ag3PO4 crystal with 200-600 nm in diameter was successfully synthesized using co-precipitation method with AgNO3 and Na2HPO4.12H2O as starting materials. The product was characterized using XRD, DRS, FTIR and SEM. The photocatalytic activities were evaluated under blue light irradiation assisted by Fe2+. The 1 mL of Fe2+ aqueous solutions consisted of 1.00, 0.10, 0.01, 0.001 and 0.0001 mM Fe2+ was added into a 100 mL solution of Rhodamine B, and the photocatalytic oxidation of Rhodamine B was carried out under visible light irradiation. The highest photocatalytic activity was observed when 1 ml of 0.001 mM of Fe2+ aqueous solution was added in the Rhodamine B solution. The result inferred the possibility of in-situ peroxide generation during the photocatalysis reaction.


2015 ◽  
Vol 1112 ◽  
pp. 163-167 ◽  
Author(s):  
Uyi Sulaeman ◽  
Estri Yunari ◽  
Ponco Iswanto ◽  
Shu Yin ◽  
Tsugio Sato

The Bi2O3/Ag3PO4 composites consisting of the monoclinic α-Bi2O3 and body-centered cubic Ag3PO4 were successfully synthesized by grinding Ag3PO4 and Bi2O3 mixtures in ethanol using an agate mortar, followed by calcination at 500°C for 5 hours, where the Ag3PO4 was synthesized by co-precipitation method using AgNO3 and NaH2PO4.2H2O as starting materials. The Bi2O3 content in the composite materials changed from 5 to 25 mol.%. The composites were characterized using XRD, DRS and BET specific surface area. The photocatalytic activities were evaluated using Rhodamin B degradation under visible light irradiation of blue LED (λ = 445 nm). The highest photocatalytic activities could be obtained at 5 mol.% Bi2O3 in Bi2O3/Ag3PO4 composite. The enhanced photocatalytic activity could be attributed to the effective separation of hole (h+) and electron (e-) pairs in the Bi2O3/Ag3PO4 composite.


2013 ◽  
Vol 423-426 ◽  
pp. 163-166 ◽  
Author(s):  
Bao Wei Cao ◽  
Yun Hua Xu

Bi2WO6 doped with iodine ions were synthesized using hydrothermal method and their photocatalytic activities to degrade Rhodamine B (RhB) under visible-light was investigated. The successful incorporation of I ions in Bi2WO6 was proved by XRD and XPS. UV-vis absorption spectra results show that I ion was successfully doped into Bi2WO6 and a red shift for I-doped Bi2WO6 appeared when compared to pure Bi2WO6. The photocatalytic activities of the photocatalysts were evaluated by the decolorization of RhB under visible-light irradiation. The results showed that the photocatalytic activity of I-doped Bi2WO6 was much higher than the undoped Bi2WO6.


Author(s):  
Febiyanto Febiyanto ◽  
Agus Soleh ◽  
Muhammad Sofi Khoerul Amal ◽  
Mohammad Afif ◽  
Sukma Sewiji ◽  
...  

The highly active photocatalyst of Ag3PO4 could be synthesized under ammonia solution using the facile co-precipitation method with the starting material of AgNO3 and Na2HPO4.12H2O.  The variation of ammonia concentration was designed at 0.00, 0.05, 0.15, and 0.30 M. The products were characterized using X-ray diffraction, UV-diffuse reflectance spectroscopy, and scanning electron microscopy. The photocatalytic activities were evaluated using the Rhodamine B degradation under blue light irradiation.  The effect of calcination, pH condition, and visible light source irradiation was carried out in the experiment. The highest photocatalytic activity was found in the sample prepared using the addition of ammonia solution at the concentration of 0.05 M. This photocatalytic activity was 4.13 times higher compared to the Ag3PO4 prepared without the ammonia. The effective condition of photocatalytic activity was achieved at the sample prepared without calcination, degradation at pH of 7 and under blue light irradiation. Copyright © 2019 BCREC Group. All rights reservedReceived: 20th April 2018; Revised: 1st September 2018; Accepted: 4th September 2018; Available online: 25th January 2019; Published regularly: April 2019How to Cite: Febiyanto, F., Soleh, A., Amal, M.S.K., Afif, M., Sewiji, S., Riapanitra, A., Sulaeman, U. (2019). Facile Synthesis of Ag3PO4 Photocatalyst with Varied Ammonia Concentration and Its Photocatalytic Activities For Dye Removal. Bulletin of Chemical Reaction Engineering & Catalysis, 14 (1):42-50 (doi:10.9767/bcrec.14.1.2549.42-50)Permalink/DOI: https://doi.org/10.9767/bcrec.14.1.2549.42-50   


Author(s):  
Mukholit, Heri Sutanto ◽  
Ngurah Ayu Ketut Umiati ◽  
Eko Hidayanto

Bi2O3 has successfully been synthesized using precipitation method with sintering temperature variations of 400oC, 450o C, 500o C, 550o C, and 600o C. Crystallinity property of resulting Bi2O3 powder has also been tested with XRD and morphology properties were tested with SEM. Meanwhile, photocatalytic properties were tested by using it to degrade Rhodamine B under sunlight. Results of XRD tests show that differences in sintering temperature affect crystallite size. Increases in sintering temperature between 400o C and 500o C result in greater crystallite size, whereas sintering temperature between 550o C and 600oC result in smaller crystallite size. Results of SEM tests show that resulting Bi2O3 has rod-like structure, While results of degradation tests show that increases in sintering temperature enhances photocatalytic activities of Bi2O3, as evident with Bi2O3 undergoing sintering at 600oC was able to degrade Rhodamine B with 56.74% effectiveness and degradation rate of 0.007 ppm/min.


2017 ◽  
Vol 757 ◽  
pp. 88-92
Author(s):  
Cheewita Suwanchawalit ◽  
Kamonchanok Roongraung ◽  
Supat Buddee ◽  
Sumpun Wongnawa ◽  
Avinash Patil

Silver-modified bismuth vanadate (Ag-BiVO4) photocatalysts were easily prepared via the co-precipitation method. The effects of silver contents on the chemical properties of BiVO4 were evaluated. The prepared Ag-BiVO4 samples were characterized by several techniques such as X-ray diffractometry (XRD), scanning electron microscopy (SEM), and diffused reflectance UV-Vis spectroscopy (DRS). The mixed phase of monoclinic scheetlite structure and characteristic peaks of silver particles were found. Silver contents strongly affect the morphology of the prepared Ag-BiVO4 samples. DRS spectra revealed that the synthesized Ag-BiVO4 samples exhibited strong absorption in the visible region. The absorption in the visible zone is responsible for the high photocatalytic activity of Ag-BiVO4 under visible light irradiation. The photocatalytic degradation of methylene blue under visible light irradiation was studied using the BiVO4 as photocatalysts. The photocatalytic results reveal that the prepared Ag-BiVO4 samples could degrade the methylene blue dye.


Author(s):  
Sivakumar Krishnamoorthy ◽  
Dharani M.

Zinc oxide (ZnO) nanoparticles prepared using simple co-precipitation method are characterized and photocatalytic activity is tested on the degradation of methylene blue and rhodamine B organic pollutants. Morphological and structural properties of synthesized nanomaterial have been characterized using FESEM, EDAX spectroscopy, and XRD, while UV-visible DRS spectroscopy and photoluminescence have been used to understand their optical properties. The photocatalytic behaviour of synthesized nanoparticles was evaluated on the degradation of methylene blue (MB) and rhodamine B (RhB) organic pollutants under solar light irradiation. The highest degradation was achieved for MB (100%) over RhB (96%). Preliminary investigation shows the effective degradation of organic pollutants by ZnO nanoparticles.


Author(s):  
Fengfeng Li ◽  
Mingxi Zhang ◽  
Jin Wang ◽  
Yongfeng Cai ◽  
Dushao Zhao ◽  
...  

Abstract In this work, we fabricate a highly efficient photocatalytic AgBr/Ag2CO3 heterojunction through the co-precipitation method. The obtained samples were characterized by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, ultraviolet-visible diffuse reflectance spectra and X-ray photoelectron spectroscopy. The photocatalytic activities of obtained samples can be assessed by visible light (λ ≥ 400 nm) degradation of rhodamine B solution. X-ray diffraction revealed that the crystallinity of the AgBr/Ag2CO3heterojunction was significantly higher than pure AgBr and Ag2CO3. Moreover, the AgBr/ Ag2CO3 heterojunction prepared at pH = 6 has the best photocatalytic performance, it can raise the degradation degree of rhodamine B over 95% at 20 min. Finally, a possible photocatalytic mechanism is discussed.


2014 ◽  
Vol 5 ◽  
pp. 587-595 ◽  
Author(s):  
Leny Yuliati ◽  
Melody Kimi ◽  
Mustaffa Shamsuddin

Background: The hydrothermal method was used as a new approach to prepare a series of Ag-doped Cd0.1Zn0.9S photocatalysts. The effect of Ag doping on the properties and photocatalytic activity of Cd0.1Zn0.9S was studied for the hydrogen production from water reduction under visible light irradiation. Results: Compared to the series prepared by the co-precipitation method, samples prepared by the hydrothermal method performed with a better photocatalytic activity. The sample with the optimum amount of Ag doping showed the highest hydrogen production rate of 3.91 mmol/h, which was 1.7 times higher than that of undoped Cd0.1Zn0.9S. With the Ag doping, a red shift in the optical response was observed, leading to a larger portion of the visible light absorption than that of without doping. In addition to the larger absorption in the visible-light region, the increase in photocatalytic activity of samples with Ag doping may also come from the Ag species facilitating electron–hole separation. Conclusion: This study demonstrated that Ag doping is a promising way to enhance the activity of Cd0.1Zn0.9S photocatalyst.


Sign in / Sign up

Export Citation Format

Share Document