scholarly journals Precursor Effect on Mn-Fe-Ce/TiO2 Catalysts for Selective Catalytic Reduction of NO with NH3 at Low Temperatures

Catalysts ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 259
Author(s):  
Siva Sankar Reddy Putluru ◽  
Leonhard Schill ◽  
Anker Degn Jensen ◽  
Bernard Siret ◽  
Frank Tabaries ◽  
...  

Preparation of Mn/TiO2, Mn-Fe/TiO2, and Mn-Fe-Ce/TiO2 by the deposition-precipitation (DP) method can afford very active catalysts for low-temperature NH3-SCR (selective catalytic reduction of NO with NH3). The effect of precursor choice (nitrate vs. acetate) of Mn, Fe, and Ce on the physiochemical properties including thermal stability and the resulting SCR activity were investigated. The resulting materials were characterized by N2-Physisorption, XRD (Powder X-ray diffraction), XPS (X-ray photoelectron spectroscopy), H2-TPR (temperature-programmed reduction with hydrogen), and the oxidation of NO to NO2 measured at 300 °C. Among all the prepared catalysts 5MnAce/Ti, 25Mn0.75AceFe0.25Nit/Ti, and 25Mn0.75AceFe0.20NitCe0.05Ace/Ti showed superior SCR activity at low temperature. The superior activity of the latter two materials is likely attributable to the presence of amorphous active metal oxide phases (manganese-, iron- and cerium-oxide) and the ease of the reduction of metal oxides on TiO2. Enhanced ability to convert NO to NO2, which can promote fast-SCR like pathways, could be another reason. Cerium was found to stabilize amorphous manganese oxide phases when exposed to high temperatures.

Catalysts ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 202
Author(s):  
Long Lu ◽  
Xueman Wang ◽  
Chunhua Hu ◽  
Ying Liu ◽  
Xiongbo Chen ◽  
...  

Nanosized V-Ce oxides supported on TiO2 (VCT) were prepared and utilized in the low-temperature selective catalytic reduction (SCR) of NO with NH3. Compared with the other V-Ce oxides-based catalysts supported on Al2O3, ZrO2, and ZSM-5, VCT showed the best SCR activity in a low-temperature range. The NOx conversion of 90% could be achieved at 220 °C. Characterizations including X-ray diffraction (XRD), scanning election micrograph (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), temperature-programmed desorption with NH3 (NH3-TPD), and temperature-programmed reduction with H2 (H2-TPR) showed that V1.05Ce1/TiO2 exhibited a good dispersion of V2O5, enrichment of surface Ce3+ and chemical-absorbed oxygen, and excellent redox capacity and acidity, which resulted in the best SCR performance at low temperature.


Catalysts ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 140 ◽  
Author(s):  
Min Lu ◽  
Haili Hou ◽  
Chuanying Wei ◽  
Xiaohui Guan ◽  
Wei Wei ◽  
...  

At present, the development of novel catalysts with high activity Selective Catalytic Reduction (SCR) reaction at the low temperature is still a challenge. In this work, the authors prepare CeO2/quasi-MIL-101 catalysts with various amounts of deposited ceria by a double-solvent method, which are characterized by X-ray diffraction (XRD), Fourier Transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and so on. The results show that the increase of Ce content has a great influence on the catalytic property of the catalyst. The introduction of Ce can promote the conversion between Cr3+ and Cr5+ and increase the proportion of lattice oxygen, which improves the activity of the catalyst. However, the catalyst will be peroxidized when the content of Ce is too high, resulting in the decline of the catalytic activity. This experiment indicates that CeO2/quasi-MIL-101 plays a significant role in the NH3-SCR process at the low temperature when the loading of Ce is 0.5%. This work has proved the potential of this kind of material in NH3-SCR process at the low temperature, providing help for subsequent studies.


Catalysts ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 956 ◽  
Author(s):  
Husnain ◽  
Wang ◽  
Fareed

The selective catalytic reduction of NO with NH3 at low temperatures has been investigated with natural iron ore catalysts. Four iron ore raw materials from different locations were taken and processed to be used as catalysts. The methods of X-ray diffraction (XRD), X-ray fluorescence (XRF), Brunauer-Emmett-Teller (BET), X-ray photoelectron spectroscopy (XPS), hydrogen temperature-programmed reduction (H2-TPR), ammonia temperature-programmed desorption (NH3-TPD), scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR) were used to characterize the materials. The results showed that the sample A (comprised mainly of α-Fe2O3 and γ-Fe2O3), calcined at 250 °C, achieved excellent selective catalytic reduction (SCR) activity (above 80% at 170–350 °C) and N2 selectivity (above 90% up to 250 °C) at low temperatures. Suitable calcination temperature, large surface area, high concentration of surface-adsorbed oxygen, good reducibility, lots of acid sites and adsorption of the reactants were responsible for the excellent SCR performance of the iron ore. However, the addition of H2O and SO2 in the feed gas showed some adverse effects on the SCR activity. The FT-IR analysis indicated the formation of sulfate salts on the surface of the catalyst during the SCR reaction in the presence of SO2, which could cause pore plugging and result in the suppression of the catalytic activity.


RSC Advances ◽  
2020 ◽  
Vol 10 (66) ◽  
pp. 40047-40054
Author(s):  
Qizhi Chen ◽  
Yong Yang ◽  
Hang Luo ◽  
Zuohua Liu ◽  
Zhangfa Tong ◽  
...  

Ce modified MnOx/SAPO-34 was prepared and investigated for low-temperature selective catalytic reduction of NOx with ammonia (NH3-SCR).


Catalysts ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 357 ◽  
Author(s):  
Huang ◽  
Li ◽  
Qiu ◽  
Chen ◽  
Cheng ◽  
...  

In the present study, a series of CeO2/TiO2 catalysts were fabricated by dry ball milling method in the absence and presence of organic assistants, and their catalytic performances for the selective catalytic reduction (SCR) of NO by NH3 were investigated. It was found that the addition of organic assistants in the ball milling process and the calcining ambience exerted a significant influence on the catalytic performances of CeO2/TiO2 catalysts. The nitrogen sorption isotherm measurement (BET), powder X-ray diffraction (XRD), Raman spectra, high-resolution transmission electron microscopy (HR-TEM), hydrogen temperature-programmed reduction (H2-TPR), ammonia temperature-programmed desorption (NH3-TPD), sulfur dioxide temperature-programmed desorption (SO2-TPD), thermogravimetric analysis (TG), Fourier transform infrared (FT-IR) and X-ray photoelectron spectra (XPS) characterizations showed that the introduction of citric acid in the ball milling process could significantly change the decomposition process of the precursor mixture, which can lead to improved dispersion and reducibility of cerium species, surface acidity as well as the surface microstructure, all which were responsible for the high low temperature activity of CeTi-C-N in an NH3-SCR reaction. In contrast, the addition of sucrose in the milling process showed an inhibitory effect on the catalytic performance of CeO2/TiO2 catalyst in an NH3-SCR reaction, possibly due to the decrease of the crystallinity of the TiO2 support and the carbon residue covering the active sites.


2018 ◽  
Vol 8 (12) ◽  
pp. 2430 ◽  
Author(s):  
Xinbo Zhu ◽  
Yaolin Wang ◽  
Yu Huang ◽  
Yuxiang Cai

In this work, a series of Ce-W-Ti catalysts were synthesized using a solution combustion method for the selective catalytic reduction (SCR) of NO with NH3 at low temperatures. The reaction performance of NH3-SCR of NO was significantly improved over the Ce-W-Ti catalysts compared to Ce0.4Ti and W0.4Ti catalysts, while Ce0.2W0.2Ti showed the best activity among all the samples. The Ce0.2W0.2Ti catalyst exhibited over 90% removal of NO and 100% N2 selectivity in the temperature range of 250–400 °C at a gas hourly space velocity (GHSV) of 120,000 mL·g−1·h−1. The Ce-W-Ti catalysts were characterized using N2 adsorption-desorption, X-ray diffraction, X-ray photoelectron spectrometry and temperature programmed desorption of NH3 to establish the structure-activity relationships of the Ce-W-Ti catalysts. The excellent catalytic performance of the Ce0.2W0.2Ti catalyst could be associated with the larger specific surface area, highly dispersed Ce and W species, increased amount of surface adsorbed oxygen (Oads) and enhanced total acidity on the catalyst surfaces.


Catalysts ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 306 ◽  
Author(s):  
Ye Liu ◽  
Chonglin Song ◽  
Gang Lv ◽  
Chenyang Fan ◽  
Xiaodong Li

The cerium and/or zirconium-doped Cu/ZSM-5 catalysts (CuCexZr1−xOy/ZSM-5) were prepared by ion exchange and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), temperature-programmed reduction by hydrogen (H2-TPR). Activities of the catalysts obtained on the selective catalytic reduction (SCR) of nitric oxide (NO) by ammonia were measured using temperature programmed reactions. Among all the catalysts tested, the CuCe0.75Zr0.25Oy/ZSM-5 catalyst presented the highest catalytic activity for the removal of NO, corresponding to the broadest active window of 175–468 °C. The cerium and zirconium addition enhanced the activity of catalysts, and the cerium-rich catalysts exhibited more excellent SCR activities as compared to the zirconium-rich catalysts. XRD and TEM results indicated that zirconium additions improved the copper dispersion and prevented copper crystallization. According to XPS and H2-TPR analysis, copper species were enriched on the ZSM-5 grain surfaces, and part of the copper ions were incorporated into the zirconium and/or cerium lattice. The strong interaction between copper species and cerium/zirconium improved the redox abilities of catalysts. Furthermore, the introduction of zirconium abates N2O formation in the tested temperature range.


RSC Advances ◽  
2018 ◽  
Vol 8 (34) ◽  
pp. 19301-19309 ◽  
Author(s):  
Kai Cheng ◽  
Weiyu Song ◽  
Ying Cheng ◽  
Huiling Zheng ◽  
Lu Wang ◽  
...  

A series of FeαCu1−αTiOx catalysts with variable Cu doping amounts was directly synthesized by the sol–gel method and their catalytic performances were tested for the selective catalytic reduction of NO with ammonia.


2010 ◽  
Vol 224 (06) ◽  
pp. 907-920 ◽  
Author(s):  
Fei Li ◽  
Dehai Xiao ◽  
Jing Li ◽  
Xiangguang Yang

AbstractSelective catalytic reduction (SCR) of NO with propane using bimetals (3Co2Ce, 3Co2Sr, 3Co2Sn and 3Co2In) loaded on HMCM-49 zeolite was studied under lean-burn condition. Only 3Co2In/HMCM-49 exhibited higher deNOx activity in a wide temperature range. The catalysts were characterized by N2-adsoption, X-ray diffraction (XRD), temperature-programmed surface reactions (TPSR) and temperature-programmed desorption (TPD) of NO. TPSR and TPD results exhibited that the addition of In inhibited the oxidation ability of Co on 3Co2In/HMCM-49 catalyst, but enhanced NOx adsorption.


NANO ◽  
2015 ◽  
Vol 10 (04) ◽  
pp. 1550050 ◽  
Author(s):  
Yanbing Zhang ◽  
Zhe Xu ◽  
Xie Wang ◽  
Xiulian Lu ◽  
Yuying Zheng

Mn - FeO x/carbon nanotubes (CNTs) catalysts were firstly prepared via simple incipient wetness method and used for low-temperature selective catalytic reduction (SCR) of NO with NH 3. The structure and surface properties of the catalysts were characterized by N 2 sorption, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and temperature-programmed reduction by hydrogen ( H 2-TPR). It was found that Mn - FeO x/CNTs catalyst exhibited excellent low-temperature SCR activity and SO 2 resistance. XRD patterns revealed that metal oxides catalysts were possessed of amorphous structure. FESEM and TEM images showed that metal oxides catalysts were successfully supported on CNTs. The XPS results indicated that the obtained catalyst presented high Mn 4+/ Mn 3+ and OS/(OS + OL) ratios. The H 2-TPR profiles showed that Mn - FeO x/CNTs catalyst possessed better low-temperature reducibility. Besides, the obtained catalyst exhibited better SO 2 resistance.


Sign in / Sign up

Export Citation Format

Share Document