scholarly journals A Review on the Catalytic Hydrogenation of Bromate in Water Phase

Catalysts ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 365
Author(s):  
Jose Luis Cerrillo ◽  
Antonio Eduardo Palomares

The presence of bromate in water sources generates environmental concern due to its toxicity for humans. Diverse technologies, like membranes, ion exchange, chemical reduction, etc., can be employed to treat bromate-polluted water but they produce waste that must be treated. An alternative to these technologies can be the catalytic reduction of bromate to bromide using hydrogen as a reducing agent. In this review, we analyze the research published about this catalytic technology. Specifically, we summarize and discuss about the state of knowledge related to (1) the different metals used as catalysts for the reaction; (2) the influence of the support on the catalytic activity; (3) the characterization of the catalysts; (4) the reaction mechanisms; and (5) the influence of the water composition in the catalytic activity and in the catalyst stability. Based on published papers, we analyze the strength and weaknesses of this technique and the possibilities of using this reaction for the treatment of bromate-polluted water as a sustainable process.

2013 ◽  
Vol 313-314 ◽  
pp. 232-236
Author(s):  
Dan Zhang

Activated carbon supported gold nanoparticles (Au/C) were prepared by a chemical reduction process using NaBH4as a reducing agent. The characterization of transmission electron microscope indicated that the Au nanoparticles (AuNPs) in the Au/C catalyst were highly well dispersed on the carbon support. The catalytic activity of the Au/C catalyst for the methanol electrooxidation (MEO) was investigated by the cyclic voltammetry (CV). The results displayed that the Au/C catalyst exhibited a favorable catalytic activity towards the MEO in alkaline solution. Moreover, the competitive adsorption between OH-and CH3OH on the surface of the AuNPs in the Au/C catalyst existed in the course of the MEO. Based on this competitive adsorption, the mechanism of the MEO on the Au/C catalyst was further investigated.


2011 ◽  
Vol 197-198 ◽  
pp. 817-820
Author(s):  
Xin Xin Guan ◽  
Wen Wen Shen ◽  
Fu Xiang Zhang ◽  
Nai Jia Guan

TiO2photocatalyst modified with N and Fe (Fe-TiO2-xNx) was obtained. Bimetal and nitrogen co-modified TiO2(Ag/Fe-TiO2-xNx) was prepared by photo catalytic reduction of Ag on the Fe and nitrogen co-modified TiO2. The catalytic activity of sample for photocatalytic reduction of nitrate under visible light was tested. And the bimetal and nitrogen co-modified TiO2was characterized by XRD, XPS, TEM and UV-vis diffuse reflectance spectrophotometry.


2012 ◽  
Author(s):  
Nor Aishah Saidina Amin ◽  
Asmadi Ali

Mangkin zeolit HZSM–5 diubahsuai secara kaedah pertukaran ion berasid bagi menghasilkan mangkin zeolit Ga–HZSM–5. Aktiviti bermangkin bagi HZSM–5 dan Ga–HZSM–5 dikaji pada suhu tindak balas 800°C dan halaju ruang jaman masa (GHSV) 7500 jam–1. Mangkin HZSM–5 dan Ga–HZSM–5 dicirikan secara XRD, NMR, Penjerapan Nitrogen dan TPD. Hasil pencirian menunjukkan aluminium keluar dari kerangka asal. HZSM–5 yang mengandungi galium adalah mangkin yang lebih baik daripada mangkin zeolit HZSM–5 bagi menghasilkan cecair hidrokarbon. Kata kunci: Ga-HZSM-5; metana; pertukaran ion berasid; cecair hidrokarbon The HZSM–5 zeolite catalyst was modified by an acidic ion exchange method to produce the Ga–HZSM–5 zeolite catalyst. The catalytic activity of HZSM–5 and Ga–HZSM–5 were studied at reaction temperature of 800°C and gas hourly space velocities (GHSV) of 7500 hr–1. HZSM–5 and Ga–HZSM–5 catalysts were characterized by XRD, NMR, Nitrogen Adsorption and TPD. The characterization results revealed that aluminium was removed from the parent framework. Gallium loaded HZSM–5 is a better catalyst than HZSM–5 zeolite catalyst to produce liquid hydrocarbons. Key words: Ga-HZSM-5; methane; acidic ion exchange; liquid hydrocarbons


Catalysts ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 43
Author(s):  
Chao Song ◽  
Shuang Guo ◽  
Lei Chen

In this paper, we designed Ag nanoparticles coated with a Cu2O shell, which was successfully decorated on reduced graphene oxide (rGO) via a solid-state self-reduction. The Cu2O, Ag@Cu2O, and Ag@Cu2O-rGO nanocomposites were synthesized and characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV–Vis, and XPS to evaluate the properties of the composites. In order to compare the chemical catalytic activity, the Cu2O, Ag@Cu2O, and Ag@Cu2O-rGO nanocomposites were employed for the catalytic reduction of p-nitrophenol (4-NP) into p-aminophenol (4-AP) in aqueous solution. The Ag@Cu2O-rGO nanocomposite exhibited excellent catalytic activity due to the intense interaction and high degree of electron transfer among Ag, Cu2O, and rGO. The rGO acted as the platform to bridge the isolated nanoparticles; furthermore, the electrons could quickly transfer from the Ag core to the Cu2O shell, which improved the chemical catalytic efficiency.


2011 ◽  
Vol 418-420 ◽  
pp. 629-632
Author(s):  
Huan Ying Li ◽  
Shu Li Bai ◽  
Wen Ping Jia ◽  
Fang Li

In this work, the constructing of different carbon nanostructures materials were studied, and the single-structure and pure surface of carbon nanostructures were employed to as catalyst support and the morphology and structure of different carbon nanostructures-based catalysts were investigated. NO catalytic reduction was used as a probe reaction to investigate the catalytic properties of different carbon nanostructures materials and how the controlling of carbon nanostructures would affect its catalytic functions. The results show that vanadium was molecularly anchored on the surface of carbon nanostructures and the mesh-carbon nanotubes as a support show a high catalytic activity.


NANO ◽  
2017 ◽  
Vol 12 (03) ◽  
pp. 1750037 ◽  
Author(s):  
Sinan Du ◽  
Yang Luo ◽  
Fang Zuo ◽  
Xinhua Li ◽  
Dong Liu

Polydopamine-coated Fe3O4 (Fe3O4@PDA) nanoparticles (NPs) were prepared as synergistic redox mediators for the catalytic reduction, by NaBH4, of azo dyes such as methyl orange (MO) and methyl red (MR). Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) were applied to determine their surface morphology, surface chemistry and detailed chemical composition, respectively. The latter technique confirmed the presence of quinone moieties. Moreover, a vibrating sample magnetometer (VSM) was used to confirm the superparamagnetic properties of these NPs. The characteristic optical absorption maximum of MO at 462[Formula: see text]nm was used to monitor the decolorization process. This was employed to determine the catalytic activity in the reaction. An enhancement of the catalytic activity of the magnetic-separable Fe3O4@PDA nanocatalyst over that of PDA microspheres (MPs) was observed. Moreover, their reusability and stability were also investigated. A synergistic electron transfer mechanism involving both Fe3O4 and PDA moieties was proposed as follows: the quinone moieties and Fe (III) species in Fe3O4@PDA NPs served as systematic redox mediators, with quinone receiving an electron from NaBH4. The reduced quinone next transfers an electron to the Fe (III) moiety, generating an Fe (II) species that in turn transfers an electron to the azo dye. We determined that this process resulted in enhanced reductive degradation of azo dyes when compared with PDA MPs. Moreover, Fe3O4@PDA NPs could be magnetically separated and recycled. We therefore concluded that these NPs show great potential in the immobilization of homogeneous catalysts in the chemical reduction processes of azo dyes.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1160
Author(s):  
Abir S. Abdel-Naby ◽  
Sara Nabil ◽  
Sarah Aldulaijan ◽  
Ibtisam M. Ababutain ◽  
Azzah I. Alghamdi ◽  
...  

Chitosan-aluminum oxide nanocomposite was synthesized, characterized, and used as a green heterogeneous catalyst to synthesize novel imidazopyrazolylthione derivatives. Nanocomposite polymeric material was characterized by EDS-SEM and XRD. The powerful catalytic activity, and its base character of the nanocomposite, was used to synthesize imidazopyrazolylthione (1) in a good yield compared to traditional cyclocondensation synthesis. Using the nanocomposite catalyst, substitution of the thiol group (1) afforded the corresponding thiourea (2) and the corresponding ester (3). The efficiency of the nanocomposite over the traditional base organic catalyst, Et3N and NaOH, makes it an effective, economic, and reproducible nontoxic catalyst. Moreover, the heterogeneous nanocomposite polymeric film was easily isolated from the reaction medium, and recycled up to four times, without a significant loss of its catalytic activity. The newly synthesized derivatives were screened as antibacterial agents and showed high potency. Molecular docking was also performed for a more in-depth investigation. The results of the docking studies have demonstrated that the docked compounds have strong interaction energies with both Gram-positive and Gram-negative bacteria.


Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 656
Author(s):  
Henrietta Kovács ◽  
Krisztina Orosz ◽  
Gábor Papp ◽  
Ferenc Joó ◽  
Henrietta Horváth

Na2[Ir(cod)(emim)(mtppts)] (1) with high catalytic activity in various organic- and aqueous-phase hydrogenation reactions was immobilized on several types of commercially available ion-exchange supports. The resulting heterogeneous catalyst was investigated in batch reactions and in an H-Cube flow reactor in the hydrogenation of phenylacetylene, diphenylacetylene, 1-hexyne, and benzylideneacetone. Under proper conditions, the catalyst was highly selective in the hydrogenation of alkynes to alkenes, and demonstrated excellent selectivity in C=C over C=O hydrogenation; furthermore, it displayed remarkable stability. Activity of 1 in hydrogenation of levulinic acid to γ-valerolactone was also assessed.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3347
Author(s):  
Arslan Mazhar ◽  
Asif Hussain Khoja ◽  
Abul Kalam Azad ◽  
Faisal Mushtaq ◽  
Salman Raza Naqvi ◽  
...  

Co/TiO2–MgAl2O4 was investigated in a fixed bed reactor for the dry reforming of methane (DRM) process. Co/TiO2–MgAl2O4 was prepared by modified co-precipitation, followed by the hydrothermal method. The active metal Co was loaded via the wetness impregnation method. The prepared catalyst was characterized by XRD, SEM, TGA, and FTIR. The performance of Co/TiO2–MgAl2O4 for the DRM process was investigated in a reactor with a temperature of 750 °C, a feed ratio (CO2/CH4) of 1, a catalyst loading of 0.5 g, and a feed flow rate of 20 mL min−1. The effect of support interaction with metal and the composite were studied for catalytic activity, the composite showing significantly improved results. Moreover, among the tested Co loadings, 5 wt% Co over the TiO2–MgAl2O4 composite shows the best catalytic performance. The 5%Co/TiO2–MgAl2O4 improved the CH4 and CO2 conversion by up to 70% and 80%, respectively, while the selectivity of H2 and CO improved to 43% and 46.5%, respectively. The achieved H2/CO ratio of 0.9 was due to the excess amount of CO produced because of the higher conversion rate of CO2 and the surface carbon reaction with oxygen species. Furthermore, in a time on stream (TOS) test, the catalyst exhibited 75 h of stability with significant catalytic activity. Catalyst potential lies in catalyst stability and performance results, thus encouraging the further investigation and use of the catalyst for the long-run DRM process.


Sign in / Sign up

Export Citation Format

Share Document