scholarly journals Performance of Sulfide-Driven Fuel Cell Aerated by Venturi Tube Ejector

Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 694
Author(s):  
Venko N. Beschkov ◽  
Elena N. Razkazova-Velkova ◽  
Martin S. Martinov ◽  
Stefan M. Stefanov

Hydrogen sulfide is frequently met in natural waters, like mineral springs, but mostly it is found in marine water with low renewal rate. The Black Sea has extremely high hydrogen sulfide content. It can be utilized in different ways, but the most promising one is direct conversion into electricity. This result can be attained by a sulfide-driven fuel cell (SDFC), converting sulfide to sulfate thus releasing electric energy up to 24 GJ/t. One of the most important problems is the mass transfer limitation on oxygen transfer in the cathode space of the fuel cell. This problem can be solved using a gas diffusion electrode or highly efficient saturation by oxygen in an ejector of the Venturi tube type. This work presents experimental data in laboratory-scale SDFC for sulfide conversion into sulfate, sulfite and polysulfide releasing different amounts of electric energy. Two types of aeration are tested: direct air blow and Venturi-tube ejector. Besides pure graphite, two catalysts, i.e., cobalt spinel and zirconia-doped graphite were tested as anodes. Experiments were carried out at initial sulfide concentrations from 50 to 300 mg/L. Sulfate, sulfite and thiosulfate ions were detected in the outlet solutions from the fuel cell. The electrochemical results show good agreement with the chemical analyses. Most of the results show attained high efficiencies of the fuel cell, i.e. up to 80%. The practical applications of this method can be extended for other purposes, like treatment of polluted water together with utilization as energy.

2014 ◽  
Vol 16 (4) ◽  
Author(s):  
B. Duysebaev ◽  
A. Abramov ◽  
S. Berstenev ◽  
N. Ryspanov ◽  
A.Y. Sokolov ◽  
...  

<p>The possibility and effectiveness of using sulfur dioxide and hydrogen sulfide as the fuel in low-temperature fuel cells at the sulfuric acid production site has been investigated. A fuel cell has been designed and constructed using palladium as a catalyst, which enables conversion of the energy of oxidation of sulfur dioxide and hydrogen sulfide to the electric energy. The experimental data showed that the use of hydrogen sulfide and sulfur dioxide as a fuel allows achieving the power of 1.0 and 0.5 mW, respectively. The <br />comparative studies with the use of hydrogen in the same fuel cell resulted in the power of about 2.0 mW, i.e. the use of hydrogen sulfide delivers a performance comparable with that of the hydrogen. The processes of oxidizing of the sulfur containing gases are used in our company in production of sulfuric acid. Oxidation <br />of these gases conducted using the conventional technological processes. The use of these processes to produce energy as a byproduct could be an attractive way to reduce the energy consumption of the whole process. Considering the relatively high power obtained in this work for the sulfur containing gases fed fuel <br />cells, the substitution of conventional oxidation of sulfur containing gases in this technological chain by the fuel cell oxidation, and by-producing the electric energy, could be very profitable for the energy efficiency enhancement of the main production process. In the future work, the design and development of fuel cell catalysts and membranes to enhance the performances of sulfur containing fuel cells will be significant</p>


2018 ◽  
Vol 8 (10) ◽  
pp. 1926
Author(s):  
Venko Beschkov ◽  
Elena Razkazova-Velkova ◽  
Martin Martinov ◽  
Stefan Stefanov

While there is a universal trend to replace fossil fuels at least partially, renewable fuels seem to impose new solutions. Hydrogen sulfide, typical for closed water ponds such as the Black Sea, seems to offer one namely, a new sulfide-driven fuel cell providing for exchange of OH− anions across the membrane by use of hydrogen sulfide in natural marine water. When tested in batch and continuous operation modes, this solution showed that the initial sulfide concentration needed to achieve results of practical value was within 200 to 300 mg dm−3. The predominating final products of the energy production process were sulfite and sulfate ions. Very low overpotentials and mass transfer resistances were observed. The mass balance and the electrochemical parameters showed about 30% efficiency in sulfate ions as the final product. Efforts should be made to enhance sulfide to sulfate conversion. The observed current and power density were comparable and even better than some of the results so far reported for similar systems. Three types of ion exchange membranes were tested. Comparison of their ion conductivity to literature data shows good performance. At higher initial sulfide concentrations polysulfides and thio-compounds were formed with considerably low current yield.


2020 ◽  
Vol 56 (88) ◽  
pp. 13611-13614
Author(s):  
Jialu Wang ◽  
Xian Zhang ◽  
Guozhong Wang ◽  
Yunxia Zhang ◽  
Haimin Zhang

A new type of direct 5-hydroxymethylfurfural (HMF) oxidation fuel cell based on a bifunctional PtNiSx/CB catalyst not only transformed chemical energy into electric energy but also converted HMF into value-added 2,5-furandicarboxylic (FDCA).


2020 ◽  
Vol 8 (46) ◽  
pp. 24284-24306
Author(s):  
Xuefeng Ren ◽  
Yiran Wang ◽  
Anmin Liu ◽  
Zhihong Zhang ◽  
Qianyuan Lv ◽  
...  

Fuel cell is an electrochemical device, which can directly convert the chemical energy of fuel into electric energy, without heat process, not limited by Carnot cycle, high energy conversion efficiency, no noise and pollution.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2967
Author(s):  
Adrian Mularczyk ◽  
Andreas Michalski ◽  
Michael Striednig ◽  
Robert Herrendörfer ◽  
Thomas J. Schmidt ◽  
...  

Facilitating the proper handling of water is one of the main challenges to overcome when trying to improve fuel cell performance. Specifically, enhanced removal of liquid water from the porous gas diffusion layers (GDLs) holds a lot of potential, but has proven to be non-trivial. A main contributor to this removal process is the gaseous transport of water following evaporation inside the GDL or catalyst layer domain. Vapor transport is desired over liquid removal, as the liquid water takes up pore space otherwise available for reactant gas supply to the catalytically active sites and opens up the possibility to remove the waste heat of the cell by evaporative cooling concepts. To better understand evaporative water removal from fuel cells and facilitate the evaporative cooling concept developed at the Paul Scherrer Institute, the effect of gas speed (0.5–10 m/s), temperature (30–60 °C), and evaporation domain (0.8–10 mm) on the evaporation rate of water from a GDL (TGP-H-120, 10 wt% PTFE) has been investigated using an ex situ approach, combined with X-ray tomographic microscopy. An along-the-channel model showed good agreement with the measured values and was used to extrapolate the differential approach to larger domains and to investigate parameter variations that were not covered experimentally.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Jamile Mohammadi Moradian ◽  
Zhen Fang ◽  
Yang-Chun Yong

AbstractBiomass is one of the most abundant renewable energy resources on the earth, which is also considered as one of the most promising alternatives to traditional fuel energy. In recent years, microbial fuel cell (MFC) which can directly convert the chemical energy from organic compounds into electric energy has been developed. By using MFC, biomass energy could be directly harvested with the form of electricity, the most convenient, wide-spread, and clean energy. Therefore, MFC was considered as another promising way to harness the sustainable energies in biomass and added new dimension to the biomass energy industry. In this review, the pretreatment methods for biomass towards electricity harvesting with MFC, and the microorganisms utilized in biomass-fueled MFC were summarized. Further, strategies for improving the performance of biomass-fueled MFC as well as future perspectives were highlighted.


Sign in / Sign up

Export Citation Format

Share Document