scholarly journals Improved Sulfur Resistance of COMMERCIAl V2O5-WO3/TiO2 SCR Catalyst Modified by Ce and Cu

Catalysts ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 906
Author(s):  
Huirong Li ◽  
Xianfang Yi ◽  
Jifa Miao ◽  
Yanting Chen ◽  
Jinsheng Chen ◽  
...  

The accumulation of NH4HSO4 leads to the deactivation of commercial V2O5-WO3/TiO2 catalyst (VWTi) in practical application. The commercial catalyst is modified with 0.3 wt. % Ce and 0.05 wt. % Cu (donated as VWCeCuTi), and its sulfur resistance is noticeably improved. After loading 20 wt. % NH4HSO4, the NOx conversion of VWCeCuTi-S remains 40% at 250 °C, higher than that of VWTi-S (25%). Through a series of characterization analyses, it was found that the damaged surface areas and acid sites are the key factors for the deactivation of S-poisoned samples. However, surface-active oxygen and NO adsorption are increased by NH4HSO4 deposition, and the L–H mechanism is promoted over S-poisoned samples. Due to the interaction between V, Ce and Cu, the surface-active oxygen over VWCeCuTi-S is increased, and then NO adsorption is promoted. In addition, VWCeCuTi-S obtains a higher V5+ ratio and a better redox property than VWTi-S, which in turn accelerates the NH3-SCR reaction. More NO adsorption and encouraged reaction contribute to the better sulfur resistance of VWCeCuTi.

Catalysts ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 929 ◽  
Author(s):  
Auvray ◽  
Mihai ◽  
Lundberg ◽  
Olsson

Lean nitric oxide (NOx)-trap (LNT) and selective catalytic reduction (SCR) are efficient systems for the abatement of NOx. The combination of LNT and SCR catalysts improves overall NOx removal, but there is a risk that the SCR catalyst will be exposed to high temperatures and rich exhaust during the LNTs sulfur regeneration. Therefore, the effect of exposure to various rich conditions and temperatures on the subsequent SCR activity of a Cu-exchanged chabazite catalyst was studied. CO, H2, C3H6, and the combination of CO + H2 were used to simulate rich conditions. Aging was performed at 800 °C, 700 °C, and, in the case of CO, 600 °C, in a plug-flow reactor. Investigation of the nature of Cu sites was performed with NH3-temperature-programed desorption (TPD) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFT) of probe molecules (NH3 and NO). The combination of CO and H2 was especially detrimental to SCR activity and to NH3 oxidation. Rich aging with low reductant concentrations resulted in a significantly larger deactivation compared to lean conditions. Aging in CO at 800 °C caused SCR deactivation but promoted high-temperature NH3 oxidation. Rich conditions greatly enhanced the loss of Brønsted and Lewis acid sites at 800 °C, indicating dealumination and Cu migration. However, at 700 °C, mainly Brønsted sites disappeared during aging. DRIFT spectroscopy analysis revealed that CO aging modified the Cu2+/CuOH+ ratio in favor of the monovalent CuOH+ species, as opposed to lean aging. To summarize, we propose that the reason for the increased deactivation observed for mild rich conditions is the transformation of the Cu species from Z2Cu to ZCuOH, possibly in combination with the formation of Cu clusters.


Catalysts ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 555
Author(s):  
Yaxin Dong ◽  
Chenguang Su ◽  
Kai Liu ◽  
Haomeng Wang ◽  
Zheng Zheng ◽  
...  

A series of FeOx-MnO2-CeO2 catalysts were synthesized by the surfactant-templated coprecipitation method and applied for HCHO removal. The influence of Fe/Mn/Ce molar ratio on the catalytic performance was investigated, and the FeOx-MnO2-CeO2 catalyst exhibited excellent catalytic activity, with complete HCHO conversion at low temperatures (40 °C) when the molar ratio of Fe/Mn/Ce was 2/5/5. The catalysts were characterized by N2 adsorption and desorption, XRD, H2-TPR, O2-TPD and XPS techniques to illustrate their structure–activity relationships. The result revealed that the introduction of FeOx into MnO2-CeO2 formed a strong interaction between FeOx-MnO2-CeO2, which facilitated the improved dispersion of MnO2-CeO2, subsequently increasing the surface area and aiding pore development. This promotion effect of Fe enhanced the reducibility and produced abundant surface-active oxygen. In addition, a great number of Oα is beneficial to the intermediate decomposition, whereas the existence of Ce3+ favors the formation of oxygen vacancies on the surface of the catalyst, all of which contributed to HCHO oxidation at low temperatures.


Catalysts ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 163
Author(s):  
Masaru Ogura ◽  
Yumiko Shimada ◽  
Takeshi Ohnishi ◽  
Naoto Nakazawa ◽  
Yoshihiro Kubota ◽  
...  

This paper introduces a joint industries–academia–academia research project started by researchers in several automobile companies and universities working on a single theme. Our first target was to find a zeolite for NH3-SCR, that is, zeolite mining. Zeolite AFX, having the same topology of SSZ-16, was found to be the one of the zeolites. SSZ-16 can be synthesized by using an organic structure-directing agent such as 1,1′-tetramethylenebis(1-azonia-4-azabicyclo[2.2.2]octane; Dab-4, resulting in the formation of Al-rich SSZ-16 with Si/Al below five. We found that AFX crystallized by use of N,N,N′,N′-tetraethylbicyclo[2.2.2]oct-7-ene-2,3:5,6-dipyrrolidinium ion, called TEBOP in this study, had the same analog as SSZ-16 having Si/Al around six and a smaller particle size than SSZ-16. The AFX demonstrated a high performance for NH3-SCR as the zeolitic support to load a large number of divalent Cu ionic species with high hydrothermal stability.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2669
Author(s):  
Łukasz Kuterasiński ◽  
Jerzy Podobiński ◽  
Jerzy Datka

In this study, IR studies of the coadsorption of ethanol and CO on Cu+ cations evidenced the transfer of electrons from ethanol to Cu+, which caused the lowering of the frequency of the band attributed to CO bonded to the same Cu+ cation due to the more effective π back donation of d electrons of Cu to antibonding π* orbitals of CO. The reaction of ethanol with acid sites in zeolite HFAU above 370 K produced water and ethane, polymerizing to polyethylene. Ethanol adsorbed on zeolite Cu(2)HFAU containing acid sites and Cu+exch also produced ethene, but in this case, the ethene was bonded to Cu+ and did not polymerize. C=C stretching, which is IR non-active in the free ethene molecule, became IR active, and a weak IR band at 1538 cm−1 was present. The reaction of ethanol above 370 K in Cu(5)NaFAU zeolite (containing small amounts of Cu+exch and bigger amounts of Cu+ox, Cu2+exch and CuO) produced acetaldehyde, which was further oxidized to the acetate species (CH3COO-). As oxygen was not supplied, the donors of oxygen were the Cu species present in our zeolite. The CO and NO adsorption experiments performed in Cu-zeolite before and after ethanol reaction evidenced that both Cu+ox and Cu2+ (Cu2+exch and CuO) were consumed by the ethanol oxidation reaction. The studies of the considered reaction of bulk CuO and Cu2O as well as zeolites, in which the contribution of Cu+ox species was reduced by various treatments, suggest that ethanol was oxidized to acetaldehyde by Cu2+ox (the role of Cu+ox could not be elucidated), but Cu+ox was the oxygen donor in the acetate formation.


2020 ◽  
Vol 9 (1) ◽  
pp. 191-202
Author(s):  
Jian Wang ◽  
Chao Zhu ◽  
Baowei Li ◽  
Zhijun Gong ◽  
Zhaolei Meng ◽  
...  

AbstractTo research the roles of rare earth minerals in denitrification via the NH3-SCR, a mixture was made by certain ratio of rare earth concentrates and rare earth tailings, then treated by microwave roasting, and acids and bases to form a denitrification catalyst. The mineral phase structure and surface morphology of the catalyst were characterized by XRD, BET, SEM and EDS. The surface properties of the catalyst were tested by TPD and XPS methods, and the denitrification activity of the catalyst was evaluated in a denitrification reactor. The results showed that the denitrification efficiency increased up to 82% with complete processing. XRD, BET, SEM, and EDS spectrum analysis stated that the treated minerals contained cerium oxides and Fe−Ce composite oxides. The surface of the modified minerals became rough and porous, the surface area increased, and the surface-active sites were exposed. The results of NH3-TPD and NO-TPD showed that the catalyst surface could gradually adsorb more NH3 and NO after each step. XPS analysis indicated that there were more Ce3+, Fe2+, and lattice oxygen in rare earth minerals catalyst after each treatment step.


Author(s):  
Ben Liu ◽  
Nangui Lv ◽  
Chan Wang ◽  
Hongwei Zhang ◽  
Yuanyuan Yue ◽  
...  
Keyword(s):  

Author(s):  
Jae Gu Heo ◽  
Mahboob Ullah ◽  
Myoung-Pyo Chun ◽  
Yong Sik Chu ◽  
Seong Gwan Seo ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 475
Author(s):  
Yabin Wei ◽  
Shuangling Jin ◽  
Rui Zhang ◽  
Weifeng Li ◽  
Jiangcan Wang ◽  
...  

Novel Mn–Ce–Ti–O composite aerogels with large mesopore size were prepared via a one-pot sol–gel method by using propylene oxide as a network gel inducer and ethyl acetoacetate as a complexing agent. The effect of calcination temperature (400, 500, 600, and 700 °C) on the NH3–selective catalytic reduction (SCR) performance of the obtained Mn–Ce–Ti–O composite aerogels was investigated. The results show that the Mn–Ce–Ti–O catalyst calcined at 600 °C exhibits the highest NH3–SCR activity and lowest apparent activation energy due to its most abundant Lewis acid sites and best reducibility. The NO conversion of the MCTO-600 catalyst maintains 100% at 200 °C in the presence of 100 ppm SO2, showing the superior resistance to SO2 poisoning as compared with the MnOx–CeO2–TiO2 catalysts reported the literature. This should be mainly attributed to its large mesopore sizes with an average pore size of 32 nm and abundant Lewis acid sites. The former fact facilitates the decomposition of NH4HSO4, and the latter fact reduces vapor pressure of NH3. The NH3–SCR process on the MCTO-600 catalyst follows both the Eley–Rideal (E–R) mechanism and the Langmuir–Hinshelwood (L–H) mechanism.


Catalysts ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1020
Author(s):  
Yizhe Helian ◽  
Suping Cui ◽  
Xiaoyu Ma

Selective catalytic reduction (SCR) technology is the most widely used flue gas denitration technology at present. The stability of a catalyst is the main factor limiting the development of this technology. In this study, an environmentally friendly and highly efficient NH3-SCR catalyst was prepared by coprecipitation method from acidolysis residue of industrial waste and tourmaline. We found that the addition of tourmaline has an important impact on the denitration activity of the catalytic material. The NOx conversion exceeded 97% at 200 °C with the dosage of 10% tourmaline, which is about 7% higher than that without doping. The improvement of catalytic performance was mostly attributed to the permanent electrodes of tourmaline, which effectively promotes the dispersion of MnOx/TiO2 catalytic materials, increases the number of acidic sites and changes the valence distribution of manganese ions in products, which speeds up the diffusion of protons and ions, resulting in the acceleration of redox reaction. These as-developed tourmaline-modified MnOx/TiO2 materials have been demonstrated to be promising as a new type of highly efficient low-temperature NH3-SCR catalyst.


2020 ◽  
Vol 13 (10) ◽  
pp. 3607-3619
Author(s):  
Jan Niklas Hausmann ◽  
Stefan Mebs ◽  
Konstantin Laun ◽  
Ingo Zebger ◽  
Holger Dau ◽  
...  

Starting from a cobalt selenite precatalyst, we obtained a bulk and a near-surface active oxygen evolution catalyst and connected their structural properties to the precatalyst structure, the transformation conditions, and the catalytic activity.


Sign in / Sign up

Export Citation Format

Share Document