scholarly journals The Catalytic Oxidation of Formaldehyde by FeOx-MnO2-CeO2 Catalyst: Effect of Iron Modification

Catalysts ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 555
Author(s):  
Yaxin Dong ◽  
Chenguang Su ◽  
Kai Liu ◽  
Haomeng Wang ◽  
Zheng Zheng ◽  
...  

A series of FeOx-MnO2-CeO2 catalysts were synthesized by the surfactant-templated coprecipitation method and applied for HCHO removal. The influence of Fe/Mn/Ce molar ratio on the catalytic performance was investigated, and the FeOx-MnO2-CeO2 catalyst exhibited excellent catalytic activity, with complete HCHO conversion at low temperatures (40 °C) when the molar ratio of Fe/Mn/Ce was 2/5/5. The catalysts were characterized by N2 adsorption and desorption, XRD, H2-TPR, O2-TPD and XPS techniques to illustrate their structure–activity relationships. The result revealed that the introduction of FeOx into MnO2-CeO2 formed a strong interaction between FeOx-MnO2-CeO2, which facilitated the improved dispersion of MnO2-CeO2, subsequently increasing the surface area and aiding pore development. This promotion effect of Fe enhanced the reducibility and produced abundant surface-active oxygen. In addition, a great number of Oα is beneficial to the intermediate decomposition, whereas the existence of Ce3+ favors the formation of oxygen vacancies on the surface of the catalyst, all of which contributed to HCHO oxidation at low temperatures.

2021 ◽  
Vol 72 (3) ◽  
pp. 33-44
Author(s):  
Haifeng Tian ◽  
Yongyong Nan ◽  
Jinlong Lv ◽  
Fei Zha ◽  
Xiaohua Tang ◽  
...  

Directly incorporated phosphorus species into the framework of HZSM-5 zeolite (H[P, Al]-ZSM-5) was successfully synthesized by the facile hydrothermal method. It was characterized by employing XRD, ICP-OES, SEM, FT-IR, N2 adsorption-desorption, NH3-TPD, XPS and TG-DTA, respectively. The effects of the phosphorus species content, temperature, WHSV, and the molar ratio of methanol/1-butene in coupling transformation of methanol with 1-butene to propylene catalyzed by H[P, Al]-ZSM-5 in a fixed bed reactor were studied systematically. Tests have suggested the acid content and specific surface area of H[P, Al]-ZSM-5 are reduced. Under the condition of reaction temperature at 550�Z, molar ratio of methanol/1-butene to 1.0, reaction pressure at 0.1 MPa and WHSV= 3.53 h-1, the P-modified HZSM-5 zeolite (with the P2O5 molar composition of 0.4 )the selectivity and yield of propylene are 35.6% and 32.5%, respectively.


RSC Advances ◽  
2015 ◽  
Vol 5 (38) ◽  
pp. 30275-30285 ◽  
Author(s):  
Damma Devaiah ◽  
Takuya Tsuzuki ◽  
Thirupathi Boningari ◽  
Panagiotis G. Smirniotis ◽  
Benjaram M. Reddy

Ce0.80Pr0.12Sn0.08O2−δ combination catalyst exhibited highest CO oxidation activity owing to its high specific surface area, better reducibility, superior surface active oxygen species, and oxygen vacancies among various samples investigated.


Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 67
Author(s):  
Li Li ◽  
Ye Wang ◽  
Qing Zhao ◽  
Changwei Hu

A series of Ni-xSi/ZrO2 (x = 0, 0.1, 0.5, 1 wt%, the controlled contents of Si) catalysts with a controlled nickel content of 10 wt% were prepared by the co-impregnation method with ZrO2 as support and Si as a promoter. The effect of different amounts of Si on the catalytic performance was investigated for CO2 methanation with the stoichiometric H2/CO2 molar ratio (4/1). The catalysts were characterized by BET, XRF, H2-TPR, H2-TPD, H2-chemisorption, CO2-TPD, XRD, TEM, XPS, and TG-DSC. It was found that adding the appropriate amount of Si could improve the catalytic performance of Ni/ZrO2 catalyst at a low reaction temperature (250 °C). Among all the catalysts studied, the Ni-0.1Si/ZrO2 catalyst showed the highest catalytic activity, with H2 and CO2 conversion of 73.4% and 72.5%, respectively and the yield of CH4 was 72.2%. Meanwhile, the catalyst showed high stability and no deactivation within a 10 h test. Adding the appropriate amount of Si could enhance the interaction between Ni and ZrO2, and increase the Ni dispersion, the amounts of active sites including surface Ni0, oxygen vacancies, and strong basic sites on the catalyst surface. These might be the reasons for the high activity and selectivity of the Ni-0.1Si/ZrO2 catalyst.


Catalysts ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 252
Author(s):  
Tadej Žumbar ◽  
Alenka Ristić ◽  
Goran Dražić ◽  
Hristina Lazarova ◽  
Janez Volavšek ◽  
...  

The structure–property relationship of catalytic supports for the deposition of redox-active transition metals is of great importance for improving the catalytic efficiency and reusability of the catalysts. In this work, the role of alumina support precursors of Cu-Fe/Al2O3 catalysts used for the total oxidation of toluene as a model volatile organic air pollutant is elucidated. Surface characterization of the catalysts revealed that the surface area, pore volume and acid site concentration of the alumina supports are important but not the determining factors for the catalytic activity of the studied catalysts for this type of reaction. The determining factors are the structural order of the support precursor, the homogeneous distribution of the catalytic sites and reducibility, which were elucidated by XRD, NMR, TEM and temperature programed reduction (TPR). Cu–Fe/Al2O3 prepared from bayerite and pseudoboehmite as highly ordered precursors showed better catalytic performance compared to Cu-Fe/Al2O3 derived from the amorphous alumina precursor and dawsonite. Homogeneous distribution of FexOy and CuOx with defined Cu/Fe molar ratio on the Al2O3 support is required for the efficient catalytic performance of the material. The study showed a beneficial effect of low iron concentration introduced into the alumina precursor during the alumina support synthesis procedure, which resulted in a homogeneous metal oxide distribution on the support.


Catalysts ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 388
Author(s):  
Yuqiao Fan ◽  
Changxi Miao ◽  
Yinghong Yue ◽  
Weiming Hua ◽  
Zi Gao

In this work, Ho2O3 nanosheets were synthesized by a hydrothermal method. A series of Sr-modified Ho2O3 nanosheets (Sr-Ho2O3-NS) with a Sr/Ho molar ratio between 0.02 and 0.06 were prepared via an impregnation method. These catalysts were characterized by several techniques such as XRD, N2 adsorption, SEM, TEM, XPS, O2-TPD (temperature-programmed desorption), and CO2-TPD, and they were studied with respect to their performances in the oxidative coupling of methane (OCM). In contrast to Ho2O3 nanoparticles, Ho2O3 nanosheets display greater CH4 conversion and C2-C3 selectivity, which could be related to the preferentially exposed (222) facet on the surface of the latter catalyst. The incorporation of small amounts of Sr into Ho2O3 nanosheets leads to a higher ratio of (O− + O2−)/O2− as well as an enhanced amount of chemisorbed oxygen species and moderate basic sites, which in turn improves the OCM performance. The optimal catalytic behavior is achievable on the 0.04Sr-Ho2O3-NS catalyst with a Sr/Ho molar ratio of 0.04, which gives a 24.0% conversion of CH4 with 56.7% selectivity to C2-C3 at 650 °C. The C2-C3 yield is well correlated with the amount of moderate basic sites present on the catalysts.


Author(s):  
Radwa A. El-Salamony ◽  
Sara A. El-Sharaky ◽  
Seham A. Al-Temtamy ◽  
Ahmed M. Al-Sabagh ◽  
Hamada M. Killa

Abstract Recently, because of the increasing demand for natural gas and the reduction of greenhouse gases, interests have focused on producing synthetic natural gas (SNG), which is suggested as an important future energy carrier. Hydrogenation of CO2, the so-called methanation reaction, is a suitable technique for the fixation of CO2. Nickel supported on yttrium oxide and promoted with cobalt were prepared by the wet-impregnation method respectively and characterized using SBET, XRD, FTIR, XPS, TPR, and HRTEM/EDX. CO2 hydrogenation over the Ni/Y2O3 catalyst was examined and compared with Co–Ni/Y2O3 catalysts, Co% = 10 and 15 wt/wt. The catalytic test was conducted with the use of a fixed-bed reactor under atmospheric pressure. The catalytic performance temperature was 350 °C with a supply of H2:CO2 molar ratio of 4 and a total flow rate of 200 mL/min. The CH4 yield was reached 67%, and CO2 conversion extended 48.5% with CO traces over 10Co–Ni/Y2O3 catalyst. This encourages the direct methanation reaction mechanism. However, the reaction mechanism over Ni/Y2O3 catalyst shows different behaviors rather than that over bi-metal catalysts, whereas the steam reforming of methane reaction was arisen associated with methane consumption besides increase in H2 and CO formation; at the same temperature reaction.


Catalysts ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 354
Author(s):  
Khadijah H. Alharbi ◽  
Ali Alsalme ◽  
Ahmed Bader A. Aloumi ◽  
Mohammed Rafiq H. Siddiqui

Oxidation is an important organic transformation, and several catalysts have been reported for this conversion. In this study, we report the synthesis of mixed metal oxide CuxZnyO, which is prepared by a coprecipitation method by varying the molar ratio of Cu and Zn in the catalytic system. The prepared mixed metal oxide CuxZnyO was evaluated for catalytic performance for toluene oxidation. Various parameters of the catalytic evaluation were studied in order to ascertain the optimum condition for the best catalytic performance. The results indicate that aging time, calcination temperature, reaction temperature, and feed rate influence catalytic performance. It was found that the catalyst interfaces apparently enhanced catalytic activity for toluene oxidation. The XRD diffractograms reveal the crystalline nature of the mixed metal oxide formed and also confirm the coexistence of hexagonal and monoclinic crystalline phases. The catalyst prepared by aging for 4 h and calcined at 450 °C was found to be the best for the conversion of toluene to benzaldehyde while the reactor temperature was maintained at 250 °C with toluene fed into the reactor at 0.01 mL/min. The catalyst was active for about 13 h.


Author(s):  
Buyan-Ulzii Battulga ◽  
Tungalagtamir Bold ◽  
Enkhsaruul Byambajav

AbstractNi based catalysts supported on γ-Al2O3 that was unpromoted (Ni/γAl2O3) or promoted (Ni–Fe/γAl2O3, Ni–Co/γAl2O3, and Ni–Fe–Co/γAl2O3) were prepared using by the impregnation – co-precipitation method. Their catalytic performances for CO methanation were studied at 3 atm with a weight hourly space velocity (WHSV) of 3000 ml/g/h of syngas with a molar ratio of H2/CO = 3 and in the temperature range between 130 and 350 °C. All promoters could improve nickel distribution, and decreased its particle sizes. It was found that the Ni–Co/γAl2O3 catalyst showed the highest catalytic performance for CO methanation in a low temperature range (<250 °C). The temperatures for the 20% CO conversion over Ni–Co/γAl2O3, Ni–Fe/γAl2O3, Ni–Fe–Co/γAl2O3 and Ni/γAl2O3 catalysts were 205, 253, 263 and 270 °C, respectively. The improved catalyst distribution by the addition of cobalt promoter caused the formation of β type nickel species which had an appropriate interacting strength with alumina support in the Ni–Co/γAl2O3. Though an addition of iron promoter improved catalyst distribution, the methane selectivity was lowered due to acceleration of both CO methanation and WGS reaction with the Ni–Fe/γAl2O3. Moreover, it was found that there was no synergetic effect from the binary Fe–Co promotors in the Ni–Fe–Co/γAl2O3 on catalytic activity for CO methanation.


Catalysts ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 312 ◽  
Author(s):  
Antonella Glisenti ◽  
Andrea Vittadini

The effects of modifying the composition of LaCoO3 on the catalytic activity are predicted by density functional calculations. Partially replacing La by Sr ions has benefical effects, causing a lowering of the formation energy of O vacancies. In contrast to that, doping at the Co site is less effective, as only 3d impurities heavier than Co are able to stabilize vacancies at high concentrations. The comparison of the energy profiles for CO oxidation of undoped and of Ni-, Cu-m and Zn-doped (La,Sr)CoO3(100) surface shows that Cu is most effective. However, the effects are less spectacular than in the SrTiO3 case, due to the different energetics for the formation of oxygen vacancies in the two hosts.


1997 ◽  
Vol 12 (5) ◽  
pp. 1176-1178 ◽  
Author(s):  
A. T. Chien ◽  
J. S. Speck ◽  
F. F. Lange

Pb(ZrxTi1−x)O3 and PbZrO3 heteroepitaxial thin films were produced in an aqueous solution (10 M KOH) at ambient pressure and low temperatures (90–150 °C) on (001) SrTiO3 and LaAlO3 single crystal substrates. Growth of the Pb(ZrxTi1−x)O3 and PbZrO3 thin films initiates by the formation of {100} faceted islands. Energy dispersive spectroscopy (EDS) analysis of the Pb(ZrxTi1−x)O3 thin film shows that the Zr: Ti ratio is 45: 56, nearly identical to the molar ratio of the precursors. This route might provide a viable low temperature alternative for the formation of high dielectric constant thin films for applications such as dynamic random access memory (DRAM).


Sign in / Sign up

Export Citation Format

Share Document