scholarly journals Metal-Organic Frameworks Derived Catalyst for High-Performance Vanadium Redox Flow Batteries

Catalysts ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1188
Author(s):  
Yun-Ting Ou ◽  
Daniel Manaye Kabtamu ◽  
Anteneh Wodaje Bayeh ◽  
Hung-Hsien Ku ◽  
Yu-Lin Kuo ◽  
...  

Vanadium redox flow battery (VRFB) is one of the most promising technologies for grid-scale energy storage applications because of its numerous attractive features. In this study, metal-organic frameworks (MOF)-derived catalysts (MDC) are fabricated using carbonization techniques at different sintering temperatures. Zirconium-based MOF-derived catalyst annealed at 900 °C exhibits the best electrochemical activity toward VO2+/VO2+ redox couple among all samples. Furthermore, the charge-discharge test confirms that the energy efficiency (EE) of the VRFB assembled with MOF-derived catalyst modified graphite felt (MDC-GF-900) is 3.9% more efficient than the VRFB using the pristine graphite felt at 100 mA cm−2. Moreover, MDC-GF-900 reveals 31% and 107% higher capacity than the pristine GF at 80 and 100 mA cm−2, respectively. The excellent performance of MDC-GF-900 results from the existence of oxygen-containing groups active sites, graphite structure with high conductivity embedded with zirconium oxide, and high specific surface area, which are critical points for promoting the vanadium redox reactions. Because of these advantages, MDC-GF-900 also possesses superior stability performance, which shows no decline of EE even after 100 cycles at 100 mA cm−2.

Author(s):  
Chenyu Liu ◽  
Haitong Wei ◽  
Yanhui Gao ◽  
Ning Wang ◽  
Xiaoying Yuan ◽  
...  

Abstract Metal-Organic Frameworks (MOFs) have unique properties and stable structure, which have been widely used as templates/precursors to prepare well-developed pore structure and high specific surface area materials. In this article, an innovative and facile method of crystal reorganization was designed by using MOFs as sacrificial templates to prepare LDH nano-layer sheet structure through a pseudomorphic conversion process under alkaline conditions. The obtained CoMn-LDH and CoFe-LDH catalysts broke the ligand of MOFs and reorganized the structure on the basis of retaining a high specific surface area and a large number of pores, which have higher specific surface area and well-developed pore structure than LDH catalysts prepared by traditional methods, and thus provide more active sites to activate PMS. Due to the unique framework structure of MOFs, the MOF derived CoMn-LDH and CoFe-LDH catalysts could provide more active sites to activate PMS, and achieve a 2, 4-dichlorophenol (2, 4-DCP) degradation of 99.3% and 99.2% within 20 min, respectively. Besides, the two LDH catalysts displayed excellent degradation performance for bisphenol A (BPA), ciprofloxacin (CIP) and 2, 4-dichlorophenoxyacetic acid (2, 4-D). XPS indicated that the valence state transformation of metal elements participated in PMS activation. EPR manifested sulfate radical () and singlet oxygen (1O2) were the main species for degrading pollutants. In addition, after the three-cycle experiment, the CoMn-LDH and CoFe-LDH catalysts also showed long-term stability with a slight activity decrease in the third cycle. The phytotoxicity assessment determined by the germination of mung beans proved that PMS activation by MOFs-derived LDH catalyst can basically eliminate the phytotoxicity of 2, 4-D solution. This research not only developed high-activity LDH catalysts for PMS activation, but also expanded the environmental applications of MOFs derivants.


2019 ◽  
Vol 2 (4) ◽  
pp. 2541-2551 ◽  
Author(s):  
Anteneh Wodaje Bayeh ◽  
Daniel Manaye Kabtamu ◽  
Yu-Chung Chang ◽  
Guan-Cheng Chen ◽  
Hsueh-Yu Chen ◽  
...  

Catalysts ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 627
Author(s):  
Song-Yu Chen ◽  
Yu-Lin Kuo ◽  
Yao-Ming Wang ◽  
Wei-Mau Hsu ◽  
Tzu-Hsuan Chien ◽  
...  

The intrinsic hydrophobicity of graphite felt (GF) is typically altered for the purpose of the surface wettability and providing active sites for the enhancement of electrochemical performance. In this work, commercial GF is used as the electrodes. The GF electrode with a coated-polydopamine catalyst is achieved to enhance the electrocatalytic activity of GF for the redox reaction of vanadium ions in vanadium redox flow battery (VRFB). Materials characteristics proved that a facile coating via atmospheric pressure plasma jet (APPJ) to alter the surface superhydrophilicity and to deposit polydopamine on GF for providing the more active sites is feasibly achieved. Due to the synergistic effects of the presence of more active sites on the superhydrophilic surface of modified electrodes, the electrochemical performance toward VO2+/VO2+ reaction was evidently improved. We believed that using the APPJ technique as a coating method for electrocatalyst preparation offers the oxygen-containing functional groups on the substrate surface on giving a hydrogen bonding with the grafted functional polymeric materials.


Nano Letters ◽  
2013 ◽  
Vol 13 (3) ◽  
pp. 1330-1335 ◽  
Author(s):  
Bin Li ◽  
Meng Gu ◽  
Zimin Nie ◽  
Yuyan Shao ◽  
Qingtao Luo ◽  
...  

2018 ◽  
Vol 6 (3) ◽  
pp. 3019-3028 ◽  
Author(s):  
Anteneh Wodaje Bayeh ◽  
Daniel Manaye Kabtamu ◽  
Yu-Chung Chang ◽  
Guan-Cheng Chen ◽  
Hsueh-Yu Chen ◽  
...  

2018 ◽  
Vol 6 (15) ◽  
pp. 6625-6632 ◽  
Author(s):  
Purna C. Ghimire ◽  
Rüdiger Schweiss ◽  
Günther G. Scherer ◽  
Nyunt Wai ◽  
Tuti M. Lim ◽  
...  

Binder free titanium carbide decorated graphite felt as high performance negative electrode in vanadium redox flow battery.


2021 ◽  
Author(s):  
Bahareh ameri ◽  
Akbar Mohammadi Zardkhoshoui ◽  
Saied Saeed Hosseiny Davarani

Metal-organic frameworks (MOFs) derived nanoarchitectures have special features, such as high surface area (SA), abundant active sites, exclusive porous networks, and remarkable supercapacitive performance when compared to traditional nanoarchitectures. Herein,...


Sign in / Sign up

Export Citation Format

Share Document