scholarly journals Diversifying Arena of Drug Synthesis: In the Realm of Lipase Mediated Waves of Biocatalysis

Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1328
Author(s):  
Sahil Verma ◽  
Rahul Narayanlal Choudhary ◽  
Akash Prakash Kanadje ◽  
Uttam Chand Banerjee

Hydrolases, being most prominent enzymes used in industrial processes have left no stone unturned in fascinating the pharmaceutical industry. Lipases, being a part of acyl hydrolases are the ones that function similarly to esterases (except an interfacial action) wherein they generally catalyze the hydrolysis of ester bonds. Be it in terms of stereoselectivity or regioselectivity, lipases have manifested their promiscuous proficiency in rendering biocatalytic drug synthesis and intermediates thereof. Industrial utilization of lipases is prevalent since decades ago, but their distinctive catalytic competencies have rendered them suitable for maneuverability in various tides of biocatalytic industrial process development. Numbers of exquisite catalysts have been fabricated out of lipases using nanobiotechnology whereby enzyme reusability and robustness have been conferred to many of the organic synthesis procedures. This marks a considerable achievement of lipases in the second wave of biocatalysis. Furthermore, in the third wave an advent of genetic engineering has fostered an era of customized lipases for suitable needs. Be it stability or an enhanced efficacy, genetic engineering techniques have ushered an avenue for biocatalytic development of drugs and drug intermediates through greener processes using lipases. Even in the forthcoming concept of co-modular catalytic systems, lipases may be the frontiers because of their astonishing capability to act along with other enzymes. The concept may render feasibility in the development of cascade reactions in organic synthesis. An upcoming wave demands fulfilling the vision of tailored lipase whilst a far-flung exploration needs to be unveiled for various research impediments in rendering lipase as a custom fit biocatalyst in pharmaceutical industry.

2020 ◽  
Vol 5 (5) ◽  
Author(s):  
Laura Raimondi ◽  
Chiara Faverio ◽  
Monica Fiorenza Boselli

AbstractChiral molecules hold a mail position in Organic and Biological Chemistry, so pharmaceutical industry needs suitable strategies for drug synthesis. Moreover, Green Chemistry procedures are increasingly required in order to avoid environment deterioration. Catalytic synthesis, in particular organocatalysis, in thus a continuously expanding field. A survey of more recent researches involving chiral imidazolidinones is here presented, with a particular focus on immobilized catalytic systems.


2018 ◽  
Vol 14 ◽  
pp. 2553-2567 ◽  
Author(s):  
Keishiro Tahara ◽  
Ling Pan ◽  
Toshikazu Ono ◽  
Yoshio Hisaeda

Cobalamins (B12) play various important roles in vivo. Most B12-dependent enzymes are divided into three main subfamilies: adenosylcobalamin-dependent isomerases, methylcobalamin-dependent methyltransferases, and dehalogenases. Mimicking these B12 enzyme functions under non-enzymatic conditions offers good understanding of their elaborate reaction mechanisms. Furthermore, bio-inspiration offers a new approach to catalytic design for green and eco-friendly molecular transformations. As part of a study based on vitamin B12 derivatives including heptamethyl cobyrinate perchlorate, we describe biomimetic and bioinspired catalytic reactions with B12 enzyme functions. The reactions are classified according to the corresponding three B12 enzyme subfamilies, with a focus on our recent development on electrochemical and photochemical catalytic systems. Other important reactions are also described, with a focus on radical-involved reactions in terms of organic synthesis.


2013 ◽  
Vol 218-219 ◽  
pp. 153-161 ◽  
Author(s):  
Jean-François Joly ◽  
Fabrice Giroudière ◽  
Fabrice Bertoncini

2016 ◽  
Vol 18 (20) ◽  
pp. 5391-5411 ◽  
Author(s):  
Donia Friedmann ◽  
Amer Hakki ◽  
Hyejin Kim ◽  
Wonyong Choi ◽  
Detlef Bahnemann

Heterogeneous photocatalytic systems have the potential to provide green organic synthesis routes for a number of industrially important chemicals. This review presents the latest achievements in this research field and compares them with traditional catalytic systems employed in organic synthesis.


2015 ◽  
Vol 36 (1) ◽  
pp. 39-48 ◽  
Author(s):  
Dariusz Śpiewak ◽  
Aleksander Krótki ◽  
Tomasz Spietz ◽  
Marcin Stec ◽  
Lucyna Więcław–Solny ◽  
...  

Abstract :This paper provides a discussion concerning results of CO2 removal from a gas mixture by the application of aqueous solutions of ethanoloamine (MEA) and 2-amino-2-methyl-1-propanol (AMP) promoted with piperazine (PZ). The studies were conducted using a process development unit. Research of such a scale provides far more reliable representation of the actual industrial process than modelling and laboratory tests. The studies comprised comparative analyses entailing identical energy supplied to a reboiler as well as tests conducted at similar process efficiencies for both solvents. The results thus obtained imply that using AMP/PZ enables reduction of the solvent heat duty. Moreover, while using AMP/PZ temperature decrease was also observed in the columns.


2021 ◽  
Author(s):  
◽  
Matthew Fisk

<p>The design and development of new chemical reactions is crucial for progress in organic synthesis research. Cascade reactions, involving two or more steps carried out in situ in a single pot, provide a step-efficient and atom-economic route to synthesise polycyclic ring systems. The synthesis of new heterocyclic ring systems provides valuable routes towards complex natural products. Previous work in the Harvey group led to the development of a regioselective palladium-catalysed allylic alkylation (Pd-AA) cascade. This research aims to expand the scope and utility of this existing Pd-AA cascade, by optimising the current reaction conditions and exploring a range of non-symmetric pyran-based bis-electrophiles and nitrogen and sulfur-based β-carbonyl bis-nucleophiles.  Isomeric 2,3-unsaturated silyl glycosides based on D-glucose and D-galactose were successfully synthesised. These substrates were assessed as bis-electrophiles in the Pd-AA cascade. The yield of the cascade was successfully optimised with the glucose-derived substrate 4-hydroxy-6-methylpyran-2-one, using Pd₂(dba)₃ and Xantphos, to 87% from the previously reported 77% yield. However, the galactose-derived silyl glycoside formed an undesired pyranone as the major product. Additionally, a series of β-dicarbonyl compounds (4-hydroxy-6-methylpyran-2-one analogues) were assessed as bis-nucleophiles in the Pd-AA cascade, with all of the analogues forming complex mixtures of side products and a fully unsaturated pyranone as the major isolated product.</p>


2019 ◽  
Vol 8 (4) ◽  
pp. 139-161 ◽  
Author(s):  
Nada A Helal ◽  
Ola Elnoweam ◽  
Heba Abdullah Eassa ◽  
Ahmed M Amer ◽  
Mohamed Ashraf Eltokhy ◽  
...  

Continuous manufacturing (CM) has the potential to provide pharmaceutical products with better quality, improved yield and with reduced cost and time. Moreover, ease of scale-up, small manufacturing footprint and on-line/in-line monitoring and control of the process are other merits for CM. Regulating authorities are supporting the adoption of CM by pharmaceutical manufacturers through issuing proper guidelines. However, implementation of this technology in pharmaceutical industry is encountered by a number of challenges regarding the process development and quality assurance. This article provides a background on the implementation of CM in pharmaceutical industry, literature survey of the most recent state-of-the-art technologies and critically discussing the encountered challenges and its future prospective in pharmaceutical industry.


2019 ◽  
Vol 116 (6) ◽  
pp. 1315-1325 ◽  
Author(s):  
David J Sewell ◽  
Richard Turner ◽  
Ray Field ◽  
William Holmes ◽  
Rahul Pradhan ◽  
...  

Catalysts ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 287 ◽  
Author(s):  
Jana Löwe ◽  
Harald Gröger

The utilization of hydroxy fatty acids has gained more and more attention due to its applicability in many industrial building blocks that require it, for example, polymers or fragrances. Furthermore, hydroxy fatty acids are accessible from biorenewables, thus contributing to a more sustainable raw material basis for industrial chemicals. Therefore, a range of investigations were done on fatty acid hydratases (FAHs), since these enzymes catalyze the addition of water to an unsaturated fatty acid, thus providing an elegant route towards hydroxy-substituted fatty acids. Besides the discovery and characterization of fatty acid hydratases (FAHs), the design and optimization of syntheses with these enzymes, the implementation in elaborate cascades, and the improvement of these biocatalysts, by way of mutation in terms of the substrate scope, has been investigated. This mini-review focuses on the research done on process development using fatty acid hydratases as a catalyst. It is notable that biotransformations, running at impressive substrate loadings of up to 280 g L−1, have been realized. A further topic of this mini-review is the implementation of fatty acid hydratases in cascade reactions. In such cascades, fatty acid hydratases were, in particular, combined with alcohol dehydrogenases (ADH), Baeyer-Villiger monooxygenases (BVMO), transaminases (TA) and hydrolases, thus enabling access to a broad variety of molecules that are of industrial interest.


Sign in / Sign up

Export Citation Format

Share Document