scholarly journals Ultrasonic-Assisted Synthesis of 2D α-Fe2O3@g-C3N4 Composite with Excellent Visible Light Photocatalytic Activity

Catalysts ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 457 ◽  
Author(s):  
Huoli Zhang ◽  
Changxin Zhu ◽  
Jianliang Cao ◽  
Qingjie Tang ◽  
Man Li ◽  
...  

In this study, α-Fe2O3@g-C3N4 photocatalyst was synthesized using an ultrasonic assisted self-assembly preparation method. The α-Fe2O3@g-C3N4 photocatalyst had a stronger optical absorption in the visible light region than pure graphitic carbon nitride (g-C3N4). The Z-Scheme heterojunction between α-Fe2O3 and g-C3N4 significantly inhibited the recombination of electrons and holes. The photocatalytic performances of α-Fe2O3@g-C3N4 photocatalyst were excellent in degradation of Rhodamine B (RhB) under visible light irradiation. The results indicated that 5 wt.% α-Fe2O3/g-C3N4 had the optimal photocatalytic activity because two-dimension (2D) α-Fe2O3 nanosheets can be well-dispersed on the surface of g-C3N4 layers by ultrasonic assisted treatment. A possible photocatalytic mechanism is also discussed.

2020 ◽  
Vol 12 (3) ◽  
pp. 449-453 ◽  
Author(s):  
Bo Wang ◽  
Ruiling Zhang ◽  
Jin Xu ◽  
Songyan Qin ◽  
Jiajun Zheng ◽  
...  

N doped TiO2 nano-crystalline was prepared through hydrolysis-precipitation process in the presence of ammonia water. The resulting materials were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS). It was found that N was incorporated into the lattice of TiO2 through substituting lattice oxygen atoms and coexisted in the forms of substitutional N (O–Ti–N) and interstitial N (Ti–O–N). Further, doping with N could greatly improve the phase transformation of TiO2 from rutile to anatase and light absorption in visible light region. The high visible light photocatalytic activity for the degradation of RhB of N doped TiO2 was mainly attributed to the small crystallite size, mixed phase composition, intense light absorption in visible light region, narrow band gap energy and surface hydroxyl groups.


2016 ◽  
Vol 16 (4) ◽  
pp. 3570-3576 ◽  
Author(s):  
Yulong Hu ◽  
Fu Dong ◽  
Hongfang Liu ◽  
Xingpeng Guo

Pd and Pt modified N-doped titania nanoparticle powders were prepared by a facile sol–gel method. Nitrogen doping and metal modification were carried out simultaneously during the preparation process. The as-prepared samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), diffuse reflectance spectroscopy (DRS), photoluminescence (PL) spectroscopy and X-ray photoelectron spectroscopy (XPS). The visible light photocatalytic activities of the asprepared samples were evaluated by analyzing their effect on the photocatalytic decomposition of methyl orange (MO). The chemical state of the metal is the key factor determining the performance of metal modified N-doped titania. The Pd used to modify the N-doped titania (Pd-NT) in our study was of the PdOx(x≤2) species, which increased the absorbance in the visible light region, decreased the recombination of photo-generated electron–hole pairs, and resulted in a significant enhancement in the visible light photocatalytic activity. The Pt species used to modify the N-doped titania (Pt-NT) was mainly in the metallic state, which resulted in a decrease in the absorbance in the visible light region, and an increase in the recombination of photo-generated electron–hole pairs. Pt modification led to a deterioration in the visible light photocatalytic activity of the material.


2010 ◽  
Vol 63 ◽  
pp. 52-57 ◽  
Author(s):  
Uyi Sulaeman ◽  
Shu Yin ◽  
Tsugio Sato

Niobium and nitrogen co-doped SrTiO3 possessing excellent visible light responsive photocatalytic activity was successfully synthesized by microwave-assisted solvothermal reaction using SrCl2.6H2O, Ti(OC3H7)4, NbCl5 and hexamethylenetetramine in KOH aqueous solution. The photocatalytic activity was determined by DeNOx ability using LED lamps with the wavelengths of 627 nm (red), 530 nm (green), 445 nm (blue) and 390 nm (UV). The photocatalytic activity of SrTiO3 for DeNOx ability in visible light region could be improved by co-doping Nb5+ and N3-. The excellent visible light photocatalytic activity of this substance may be due to the generation of a new band gap that enables to absorb visible light and decrease in the lattice defects which acts as a recombination center of photoinduced electrons and holes.


2014 ◽  
Vol 5 ◽  
pp. 658-666 ◽  
Author(s):  
Difa Xu ◽  
Shaowen Cao ◽  
Jinfeng Zhang ◽  
Bei Cheng ◽  
Jiaguo Yu

Silver chromate (Ag2CrO4) photocatalysts are prepared by microemulsion, precipitation, and hydrothermal methods, in order to investigate the effect of preparation methods on the structure and the visible-light photocatalytic activity. It is found that the photocatalytic activity of the prepared Ag2CrO4was highly dependent on the preparation methods. The sample prepared by microemulsion method exhibits the highest photocatalytic efficiency on the degradation of methylene blue (MB) under visible-light irradiation. The enhanced photocatalytic activity could be ascribed to the smaller particle size, higher surface area, relatively stronger light absorption, and blue-shift absorption edge, which result in the adsorption of more MB molecules, a shorter diffusion process of more photogenerated excitons, and a stronger oxidation ability of the photogenerated holes. Considering the universalities of microemulsion, precipitation, and hydrothermal methods, this work may also provide a prototype for the comparative study of semiconductor based photocatalysis for water purification and environmental remediation.


2019 ◽  
Vol 43 (1) ◽  
pp. 162-167 ◽  
Author(s):  
Da Xu ◽  
Chang Liu ◽  
Hairui Wang ◽  
Limin Chang ◽  
Xue Lin

Here, g-C3N4 quantum dot (CNQDs)/Bi2MoO6 nanoheterostructures were successfully synthesized. The CNQDs/Bi2MoO6 nanocomposite exhibited enhanced photocatalytic activity.


Sign in / Sign up

Export Citation Format

Share Document