Effect of Calcination Temperature on Light Absorption and Visible Light Photocatalytic Activity of N Doped TiO2 Nano-Crystalline

2020 ◽  
Vol 12 (3) ◽  
pp. 449-453 ◽  
Author(s):  
Bo Wang ◽  
Ruiling Zhang ◽  
Jin Xu ◽  
Songyan Qin ◽  
Jiajun Zheng ◽  
...  

N doped TiO2 nano-crystalline was prepared through hydrolysis-precipitation process in the presence of ammonia water. The resulting materials were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS). It was found that N was incorporated into the lattice of TiO2 through substituting lattice oxygen atoms and coexisted in the forms of substitutional N (O–Ti–N) and interstitial N (Ti–O–N). Further, doping with N could greatly improve the phase transformation of TiO2 from rutile to anatase and light absorption in visible light region. The high visible light photocatalytic activity for the degradation of RhB of N doped TiO2 was mainly attributed to the small crystallite size, mixed phase composition, intense light absorption in visible light region, narrow band gap energy and surface hydroxyl groups.

2016 ◽  
Vol 16 (4) ◽  
pp. 3570-3576 ◽  
Author(s):  
Yulong Hu ◽  
Fu Dong ◽  
Hongfang Liu ◽  
Xingpeng Guo

Pd and Pt modified N-doped titania nanoparticle powders were prepared by a facile sol–gel method. Nitrogen doping and metal modification were carried out simultaneously during the preparation process. The as-prepared samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), diffuse reflectance spectroscopy (DRS), photoluminescence (PL) spectroscopy and X-ray photoelectron spectroscopy (XPS). The visible light photocatalytic activities of the asprepared samples were evaluated by analyzing their effect on the photocatalytic decomposition of methyl orange (MO). The chemical state of the metal is the key factor determining the performance of metal modified N-doped titania. The Pd used to modify the N-doped titania (Pd-NT) in our study was of the PdOx(x≤2) species, which increased the absorbance in the visible light region, decreased the recombination of photo-generated electron–hole pairs, and resulted in a significant enhancement in the visible light photocatalytic activity. The Pt species used to modify the N-doped titania (Pt-NT) was mainly in the metallic state, which resulted in a decrease in the absorbance in the visible light region, and an increase in the recombination of photo-generated electron–hole pairs. Pt modification led to a deterioration in the visible light photocatalytic activity of the material.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Xiuwen Cheng ◽  
Xiujuan Yu ◽  
Zipeng Xing ◽  
Lisha Yang

Anatase mesoporous titanium dioxide codoped with nitrogen and chlorine (N-Cl-TiO2) photocatalysts were synthesized through simple one-step sol-gel reactions in the presence of ammonium chloride. The resulting materials were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), and ultraviolet-visible diffuse reflection spectrum (UV-vis DRS). XRD results indicated that codoping with nitrogen and chlorine could effectively retard the phase transformation of TiO2from anatase to rutile and the growth of the crystallite sizes. XPS revealed that nitrogen and chlorine elements were incorporated into the lattice of TiO2through substituting the lattice oxygen atoms. DRS exhibited that the light absorption of N-Cl-TiO2in visible region was greatly improved. As a result, the band gap of TiO2was reduced to 2.12 eV. The photocatalytic activity of the as-synthesized TiO2was evaluated for the degradation of RhB and phenol under visible light irradiation. It was found that N-Cl-TiO2catalyst exhibited higher visible light photocatalytic activity than that of P25 TiO2and N-TiO2, which was attributed to the small crystallite size, intense light absorption in visible region, and narrow band gap.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Xinlei Zhang ◽  
Juan Zhou ◽  
Yufen Gu ◽  
Ding Fan

Highly ordered nitrogen-doped titanium dioxide (N-doped TiO2) nanotube arrays were prepared by anodic oxidation method and then annealed in a N2atmosphere to obtain N-doped TiO2nanotube arrays. The samples were characterized with scanning electron microscope (SEM), X-ray powder diffraction (XRD), X-ray photoelectron spectrum (XPS), and UV-visible spectrophotometry (UV-vis) spectrum. Degradation of the insecticide acephate under the visible light was used as a model to examine the visible-light photocatalytic activity of N-doped TiO2nanotube arrays. The results show that N type doping has no notable effects on the morphology and structure of TiO2nanotube arrays. After N type doping, the N replaces a small amount of O in TiO2, forming an N–Ti–O structure. This shifts the optical absorption edge and enhances absorption of the visible light. N-doped TiO2nanotube arrays subjected to annealing at 500°C in N2atmosphere show the strongest photocatalytic activity and reach a degradation rate of 84% within 2 h.


2011 ◽  
Vol 284-286 ◽  
pp. 734-737 ◽  
Author(s):  
Pei Song Tang ◽  
Hai Feng Chen ◽  
Feng Cao ◽  
Guo Xiang Pan ◽  
Kun Yan Wang

Monophasic orthorhombic InVO4 was synthesized using InCl3 and NH4VO3 as starting materials by a hydrothermal approach. The as-prepared InVO4 product was characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV-visible diffuse reflectance spectroscopy (DRS). It was found that the as-prepared InVO4 shows strong visible-light absorption with absorption onset of 515 nm, indicating a narrow optical band gap of 2.4 eV. Furthermore, the as-prepared InVO4 shows high visible-light photocatalytic activity for decomposition of methyl orange, which is ascribed to the strong visible-light absorption.


RSC Advances ◽  
2016 ◽  
Vol 6 (96) ◽  
pp. 93887-93893 ◽  
Author(s):  
Feng Guo ◽  
Weilong Shi ◽  
Yi Cai ◽  
Shuwen Shao ◽  
Tao Zhang ◽  
...  

Sheet-on-sphere Ag/AgBr@InVO4 displayed excellent photocatalytic degradation of RhB, which was attributed to enhanced visible-light absorption and anti-combination of electrons/holes through it's heterostructure.


RSC Advances ◽  
2020 ◽  
Vol 10 (57) ◽  
pp. 34775-34780 ◽  
Author(s):  
Jun Li ◽  
En-Hui Wu ◽  
Jing Hou ◽  
Ping Huang ◽  
Zhong Xu ◽  
...  

Black TiO2 has attracted widespread attention due to its visible light absorption and wide range of applications.


2015 ◽  
Vol 645-646 ◽  
pp. 368-374
Author(s):  
Yu Long Hu ◽  
Xiao Dong Zhang ◽  
Hong Fang Liu ◽  
Xing Peng Guo

N-doped TiO2 nanoparticle powders were prepared efficiently by the sol-gel method using triethylamine and ammonium hydroxide as composite N precursor. The as-prepared N-doped TiO2 precursor powders were calcined at 300°C in air for 3 h and subsequently annealed at 300°C in air for 2.5 h. The samples were characterized by X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, thermo-gravimetric analysis, and X-ray photoelectron spectroscopy. The visible light photocatalytic activities of as-prepared samples were evaluated by photodecomposition of methyl orange (MO). The results show that the as-prepared samples have high visible light photocatalytic activities. Triethylamine produces the N-species doped in TiO2 lattice responsible for the high visible light photocatalytic activity. Ammonium hydroxide makes the gel of the TiO2 nanoparticles nitrided by triethylamine gelate further and facilitates significantly the centrifugation of the gel. An annealing treatment can eliminate effectively the outer N species caused by ammonium hydroxide and the surface organic residues, improve effectively crystallinity, and retain the N species caused by triethylamine.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Min Fu ◽  
Junmin Pi ◽  
Fan Dong ◽  
Qiuyan Duan ◽  
Huan Guo

Novel graphitic carbon nitride (g-C3N4) coated TiO2nanocomposites were prepared by a facile and cost-effective solid-state method by thermal treatment of the mixture of urea and commercial TiO2. Because the C3N4was dispersed and coated on the TiO2nanoparticles, the as-prepared g-C3N4/TiO2nanocomposites showed enhanced absorption and photocatalytic properties in visible light region. The as-prepared g-C3N4coated TiO2nanocomposites under 450°C exhibited efficient visible light photocatalytic activity for degradation of aqueous MB due to the increased visible light absorption and enhanced MB adsorption. The g-C3N4coated TiO2nanocomposites would have wide applications in both environmental remediation and solar energy conversion.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Atul B. Lavand ◽  
Yuvraj S. Malghe ◽  
Suraj H. Singh

Carbon (C) doped TiO2/CdS core-shell nanocomposite (C/TiO2/CdS) was synthesized using microemulsion method. Synthesized powder was characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), and UV-visible spectrophotometery. TEM images reveal that C/TiO2/CdS core-shell heterostructure is successfully prepared with CdS as a core and C doped TiO2 as a shell. UV-visible absorption spectra show that CdS nanoparticles act as a sensitizer and effectively enhance the photoabsorption capacity of C/TiO2/CdS nanocomposite in visible region. Visible light photocatalytic activity of synthesized nanocomposite was evaluated for the degradation of methylene blue. C/TiO2/CdS core-shell nanocomposite exhibits better photocatalytic activity as compared to bare TiO2, CdS, CdS/TiO2, and C doped TiO2.


2009 ◽  
Vol 16 (04) ◽  
pp. 563-567 ◽  
Author(s):  
JIWEI ZHANG ◽  
JINGWEI ZHANG ◽  
ZHENSHENG JIN ◽  
ZHISHEN WU ◽  
ZHIJUN ZHANG

TiO 2 samples with different crystal forms were treated in flowing NH 3 at elevated temperatures to fabricate N -doped TiO 2 photocatalysts with different crystal forms. The resulting N -doped TiO 2 photocatalysts were characterized by means of X-ray diffraction, transmission electron microscopy, diffusion reflectance spectrometry, and X-ray photoelectron spectroscopy. The visible-light photocatalytic activity of the catalysts was evaluated by measuring the photocatalyzed removal rate of propylene. Results indicate that the visible-light activity of N -doped TiO 2 photocatalysts is highly dependent on the crystal form. Namely, N -doped anatase TiO 2 has the highest visible-light activity, while the visible-light activity of N -doped TiO 2 photocatalysts decreases with decreasing content of anatase phase and increasing content of rutile phase. In addition N -doped rutile TiO 2 has no visible-light photocatalytic activity.


Sign in / Sign up

Export Citation Format

Share Document