scholarly journals Performance and Stability of Metal (Co, Mn, Cu)-Promoted La2O2SO4 Oxygen Carrier for Chemical Looping Combustion of Methane

Catalysts ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 147 ◽  
Author(s):  
Stefano Cimino ◽  
Gabriella Mancino ◽  
Luciana Lisi

Oxygen carrier materials based on La2O2SO4 and promoted by small amounts (1% wt.) of transition metals, namely Co, Mn and Cu, have been synthesized and characterized by means of X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), Temperature-programmed reduction/oxidation (TPR/TPO) and thermogravimetry-mass-Fourier transform infrared spectrometry (TG-MS-FTIR) experiments under alternating feeds in order to investigate their potential use for the Chemical Looping Combustion process using either hydrogen or methane as the fuel. The chemical looping reactivity is based on the reversible redox cycle of sulfur from S6+ in La2O2SO4 to S2− in La2O2S and entails a large oxygen storage capacity, but it generally requires high temperatures to proceed, challenging material stability and durability. Herein we demonstrate a remarkable improvement of lattice oxygen availability and activity during the reduction step obtained by cost-effective metal doping in the order Co > Mn > Cu. Notably, the addition of Co or Mn has shown a significant beneficial effect to prevent the decomposition of the oxysulfate releasing SO2, which is identified as the main cause of progressive deactivation for the unpromoted La2O2SO4.

2016 ◽  
Vol 52 (68) ◽  
pp. 10369-10372 ◽  
Author(s):  
Lu Liu ◽  
Daniel D. Taylor ◽  
Efrain E. Rodriguez ◽  
Michael R. Zachariah

The selection of highly efficient oxygen carriers (OCs) is a key step necessary for the practical development of chemical looping combustion (CLC).


Author(s):  
N R McGlashan

The poor performance of internal combustion (IC) engines can be attributed to the departure from equilibrium in the combustion process. This departure is expressed numerically, as the difference between the working fluid's temperature and an ideal ‘combustion temperature’, calculated using a simple expression. It is shown that for combustion of hydrocarbons to be performed reversibly in a single reaction, impractically high working fluid temperatures are required — typically at least 3500 K. Chemical-looping combustion (CLC) is an alternative to traditional, single-stage combustion that performs the oxidation of fuels using two reactions, in separate vessels: the oxidizer and reducer. An additional species circulates between the oxidizer and reducer carrying oxygen atoms. Careful selection of this oxygen carrier can reduce the equilibrium temperature of the two redox reactions to below current metallurgical limits. Consequently, using CLC it is theoretically possible to approach a reversible IC engine without resorting to impractical temperatures. CLC also lends itself to carbon capture, as at no point is N2 from the air allowed to mix with the CO2 produced in the reduction process and therefore a post-combustion scrubbing plant is not required. Two thermodynamic criteria for selecting the oxygen carrier are established: the equilibrium temperature of both redox reactions should lie below present metallurgical limits. Equally, both reactions must be sufficiently hot to ensure that their reaction velocity is high. The key parameter determining the two reaction temperatures is the change in standard state entropy for each reaction. An analysis is conducted for an irreversible CLC system using two Rankine cycles to produce shaft work, giving an overall efficiency of 86.5 per cent. The analysis allows for irreversibilites in turbine, boiler, and condensers, but assumes reactions take place at equilibrium. However, using Rankine cycles in a CLC system is considered impractical because of the need for high-temperature, indirect heat exchange. An alternative arrangement, avoiding indirect heat exchange, is discussed briefly.


2020 ◽  
Vol 143 (8) ◽  
Author(s):  
Yali Shao ◽  
Ramesh K. Agarwal ◽  
Xudong Wang ◽  
Baosheng Jin

Abstract Chemical looping combustion (CLC) is an attractive technology to achieve inherent CO2 separation with low energy penalty. In CLC, the conventional one-step combustion process is replaced by two successive reactions in two reactors, a fuel reactor (FR) and an air reactor (AR). In addition to experimental techniques, computational fluid dynamics (CFD) is a powerful tool to simulate the flow and reaction characteristics in a CLC system. This review attempts to analyze and summarize the CFD simulations of CLC process. Various numerical approaches for prediction of CLC flow process are first introduced and compared. The simulations of CLC are presented for different types of reactors and fuels, and some key characteristics including flow regimes, combustion process, and gas-solid distributions are described in detail. The full-loop CLC simulations are then presented to reveal the coupling mechanisms of reactors in the whole system such as the gas leakage, solid circulation, redox reactions of the oxygen carrier, fuel conversion, etc. Examples of partial-loop CLC simulation are finally introduced to give a summary of different ways to simplify a CLC system by using appropriate boundary conditions.


Author(s):  
Niall R. McGlashan ◽  
Peter R. N. Childs ◽  
Andrew L. Heyes ◽  
Andrew J. Marquis

A cycle capable of generating both hydrogen and power with “inherent” carbon capture is proposed and evaluated. The cycle uses chemical looping combustion to perform the primary energy release from a hydrocarbon, producing an exhaust of CO. This CO is mixed with steam and converted to H2 and CO2 using the water-gas shift reaction (WGSR). Chemical looping uses two reactions with a recirculating oxygen carrier to oxidize hydrocarbons. The resulting oxidation and reduction stages are preformed in separate reactors—the oxidizer and reducer, respectively, and this partitioning facilitates CO2 capture. In addition, by careful selection of the oxygen carrier, the equilibrium temperature of both redox reactions can be reduced to values below the current industry standard metallurgical limit for gas turbines. This means that the irreversibility associated with the combustion process can be reduced significantly, leading to a system of enhanced overall efficiency. The choice of oxygen carrier also affects the ratio of CO versus CO2 in the reducer’s flue gas, with some metal oxide reduction reactions generating almost pure CO. This last feature is desirable if the maximum H2 production is to be achieved using the WGSR reaction. Process flow diagrams of one possible embodiment using a zinc based oxygen carrier are presented. To generate power, the chemical looping system is operated as part of a gas turbine cycle, combined with a bottoming steam cycle to maximize efficiency. The WGSR supplies heat to the bottoming steam cycle, and also helps to raise the steam necessary to complete the reaction. A mass and energy balance of the chemical looping system, the WGSR reactor, steam bottoming cycle, and balance of plant is presented and discussed. The results of this analysis show that the overall efficiency of the complete cycle is dependent on the operating pressure in the oxidizer, and under optimum conditions exceeds 75%.


2016 ◽  
Vol 22 (4) ◽  
pp. 717-721
Author(s):  
Mansing M Badadare ◽  
Naina M Adbale ◽  
R. B Khomane ◽  
Ganesh R Kale

2015 ◽  
Vol 29 (6) ◽  
pp. 3933-3943 ◽  
Author(s):  
Xiaoming Zheng ◽  
Qingquan Su ◽  
Wanliang Mi

2012 ◽  
Vol 550-553 ◽  
pp. 974-978
Author(s):  
Wen Yan Li ◽  
Xing Lei Liu ◽  
Qiu Luan Chen ◽  
Feng Ming Chu

Chemical-looping combustion (CLC) is a novel technology, which has inherent property of separating the greenhouse gas CO2, which uses oxygen carriers to transfer oxygen for combustion from air to fuel. The reactivity of Fe2O3/Al2O3 oxygen carrier was assessed by measuring their ability to oxidize CO. The kinetics and mechanism of oxygen carrier have been studied by TG and DTG techniques. The kinetic mechanism function of the reaction between Fe2O3/Al2O3 and CO has been built using the Coats-Redfern equation.


Author(s):  
Baosheng Jin ◽  
Rui Xiao ◽  
Zhongyi Deng ◽  
Qilei Song

To concentrate CO2 in combustion processes by efficient and energy-saving ways is a first and very important step for its sequestration. Chemical looping combustion (CLC) could easily achieve this goal. A chemical-looping combustion system consists of a fuel reactor and an air reactor. Two reactors in the form of interconnected fluidized beds are used in the process: (1) a fuel reactor where the oxygen carrier is reduced by reaction with the fuel, and (2) an air reactor where the reduced oxygen carrier from the fuel reactor is oxidized with air. The outlet gas from the fuel reactor consists of CO2 and H2O, while the outlet gas stream from the air reactor contains only N2 and some unused O2. The water in combustion products can be easily removed by condensation and pure carbon dioxide is obtained without any loss of energy for separation.Until now, there is little literature about mathematical modeling of chemical-looping combustion using the computational fluid dynamics (CFD) approach. In this work, the reaction kinetic model of the fuel reactor (CaSO4+ H2) is developed by means of the commercial code FLUENT and the effects of partial pressure of H2 (concentration of H2) on chemical looping combustion performance are also studied. The results show that the concentration of H2 could enhance the CLC performance.


Sign in / Sign up

Export Citation Format

Share Document