scholarly journals The Use of Power Ultrasound for the Production of PEMFC and PEMWE Catalysts and Low-Pt Loading and High-Performing Electrodes

Catalysts ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 246 ◽  
Author(s):  
Bruno Pollet

This short review paper highlights some of the research works undertaken over the years by Pollet’s research groups in Birmingham, Cape Town, and Trondheim, in the use of power ultrasound for the fabrication of low temperature fuel cell and electrolyzer catalysts and electrodes. Since the publication of ‘The use of ultrasound for the fabrication of fuel cell materials’ in 2010, there has been an upsurge of international interest in the use of power ultrasound, sonochemistry, and sonoelectrochemistry for the production of low temperature fuel cell and electrolyzer materials. This is because power ultrasound offers many advantages over traditional synthetic methods. The attraction of power ultrasound is the ability to create localized transient high temperatures and pressures, as a result of cavitation, in solutions at room temperature.

2020 ◽  
Vol 3 (1) ◽  
pp. 17
Author(s):  
Philip Anggo Krisbiantoro ◽  
Koki Kato ◽  
Lina Mahardiani ◽  
Yuichi Kamiya

Since ammonia nitrogen is a pollutant causing eutrophication, it must be removed from wastewater to develop sustainable environment and society. Ozonation, which is an oxidation reaction with ozone, is an effective and efficient method for the removal of ammonia nitrogen in wastewater because the reaction can proceed at low temperature and atmospheric pressure. Although the researches in ozonation of ammonia nitrogen have been going on for the last five decades, the reaction mechanism has not yet been well understood and the papers focusing on the reaction mechanism are very few. In this short review paper, the progress in oxidation of ammonia nitrogen with ozone both in non-catalytic and catalytic reactions is summarized to provide a better understanding on the reaction mechanism for ozonation of ammonia nitrogen in water.


2004 ◽  
Vol 52 (4) ◽  
pp. 479-487 ◽  
Author(s):  
Cs. Pribenszky ◽  
M. Molnár ◽  
S. Cseh ◽  
L. Solti

Cryoinjuries are almost inevitable during the freezing of embryos. The present study examines the possibility of using high hydrostatic pressure to reduce substantially the freezing point of the embryo-holding solution, in order to preserve embryos at subzero temperatures, thus avoiding all the disadvantages of freezing. The pressure of 210 MPa lowers the phase transition temperature of water to -21°C. According to the results of this study, embryos can survive in high hydrostatic pressure environment at room temperature; the time embryos spend under pressure without significant loss in their survival could be lengthened by gradual decompression. Pressurisation at 0°C significantly reduced the survival capacity of the embryos; gradual decompression had no beneficial effect on survival at that stage. Based on the findings, the use of the phenomena is not applicable in this form, since pressure and low temperature together proved to be lethal to the embryos in these experiments. The application of hydrostatic pressure in embryo cryopreservation requires more detailed research, although the experience gained in this study can be applied usefully in different circumstances.


Author(s):  
Siti H. Osman ◽  
S. K. Kamarudin ◽  
Nabila A. Karim ◽  
Sahriah Basri

Nanomaterials ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 28
Author(s):  
Anastasios I. Tsiotsias ◽  
Nikolaos D. Charisiou ◽  
Ioannis V. Yentekakis ◽  
Maria A. Goula

CO2 methanation has recently emerged as a process that targets the reduction in anthropogenic CO2 emissions, via the conversion of CO2 captured from point and mobile sources, as well as H2 produced from renewables into CH4. Ni, among the early transition metals, as well as Ru and Rh, among the noble metals, have been known to be among the most active methanation catalysts, with Ni being favoured due to its low cost and high natural abundance. However, insufficient low-temperature activity, low dispersion and reducibility, as well as nanoparticle sintering are some of the main drawbacks when using Ni-based catalysts. Such problems can be partly overcome via the introduction of a second transition metal (e.g., Fe, Co) or a noble metal (e.g., Ru, Rh, Pt, Pd and Re) in Ni-based catalysts. Through Ni-M alloy formation, or the intricate synergy between two adjacent metallic phases, new high-performing and low-cost methanation catalysts can be obtained. This review summarizes and critically discusses recent progress made in the field of bimetallic Ni-M (M = Fe, Co, Cu, Ru, Rh, Pt, Pd, Re)-based catalyst development for the CO2 methanation reaction.


Sign in / Sign up

Export Citation Format

Share Document