scholarly journals Enhanced Visible Light Photodegradation of Microplastic Fragments with Plasmonic Platinum/Zinc Oxide Nanorod Photocatalysts

Catalysts ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 819 ◽  
Author(s):  
Tajkia Syeed Tofa ◽  
Fei Ye ◽  
Karthik Laxman Kunjali ◽  
Joydeep Dutta

Microplastics are persistent anthropogenic pollutants which have become a global concern owing to their widespread existence and unfamiliar threats to the environment and living organisms. This study demonstrates the degradation of fragmented microplastics particularly low-density polyethylene (LDPE) film in water, through visible light-induced plasmonic photocatalysts comprising of platinum nanoparticles deposited on zinc oxide (ZnO) nanorods (ZnO-Pt). The ZnO-Pt nanocomposite photocatalysts were observed to have better degradation kinetics for a model organic dye (methylene blue) compared to bare ZnO nanorods, attributed to the plasmonic effects leading to better interfacial exciton separation and improved hydroxyl radical activity along with a 78% increase in visible light absorption. These demonstrations of the plasmonically enhanced photocatalyst enabled it to effectively degrade microplastic fragments as confirmed following the changes in carbonyl and vinyl indices in infrared absorption. In addition, visual proof of physical surface damage of the LDPE film establishes the efficacy of using plasmonically enhanced nanocomposite photocatalytic materials to tackle the microplastic menace using just sunlight for a clean and green approach towards mitigation of microplastics in the ecosystem.

Author(s):  
Mahboubeh Rabbani ◽  
Javad Shokrayian ◽  
Rahmatollah Rahimi ◽  
Rezvaneh Amrollahi

Abstract In this study, Zinc Oxide and Silver and Copper-doped Zinc Oxide nanorods were synthesized by a simple template-free precipitation technique. In addition, meso-tetrakis (4-sulfonatophenyl) porphyrin (TPPS4) was prepared and immobilized on ZnO nanorods (TPPS/ZnO). The synthesized photocatalysts were characterized by various techniques such as X-Ray Powder Diffraction (XRD), Scanning Electron Microscopy (SEM), UV-visible Spectroscopy, Diffuse Reflectance Spectroscopy (DRS), and Fourier Transform Infrared Spectroscopy (FT-IR). The potential of the obtained photocatalysts in the degradation of methylene blue was investigated under UV and visible light irradiation. The results revealed that the photocatalytic activity of TPPS/ZnO was higher than those of the pure ZnO and doped ZnO under visible light irradiation.


RSC Advances ◽  
2015 ◽  
Vol 5 (117) ◽  
pp. 96670-96680 ◽  
Author(s):  
T. Bora ◽  
M. T. Z. Myint ◽  
S. H. Al-Harthi ◽  
J. Dutta

Visible light photocatalytic activity of the plasmonic gold–zinc oxide (Au–ZnO) nanorods (NRs) is investigated with respect to the surface defects of the ZnO NRs, controlled by annealing the NRs in ambient at different temperatures.


Author(s):  
Titikshya Mohapatra ◽  
Sakshi Manekar ◽  
Vijyendra Kumar Sahu ◽  
Ashwini Kumar Soni ◽  
Sudip Banerjee ◽  
...  

Abstract This study reports a green approach for the modification of titanium dioxide (TiO2) nanoparticles with immobilization of silver nanoparticles. One of the natural sources i.e., Mangifera indica leaf extract was utilized as reducing and capping agent for the fabrication of Ag-TiO2 nanocatalyst. Further, the surface morphology and band-gap energy of prepared Ag-TiO2 were analyzed by Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS) and UV–Vis spectroscopy. Also, it was characterized by X-ray Powder Diffraction (XRD) which provides the information regarding the crystallinity of the Ag-TiO2. Subsequently, photo activity of Ag-TiO2 was investigated for the degradation of methylene blue (MB) dye wastewater through visible light driven photoreactor. The Ag-TiO2 provided highest (68%) of photo-degradation efficiency within 110 min for 7.81 × 10−5 mol/L initial MB concentration at pH 8 by using 0.19 g/L photocatalyst. Further, addition of 10 mM H2O2 boost up the MB photodegradation to 74%. The kinetic study confirmed the MB degradation followed first order rate of reaction.


Author(s):  
Sungho Park ◽  
Byung Jun Kim ◽  
Tae Yeon Kim ◽  
Eui Young Jung ◽  
Kyu-Myung Lee ◽  
...  

We have developed a visible-light phototransistor with excellent photodetection characteristics and stability via atomic layer deposition (ALD) to add a thin layer of aluminum oxide (Al2O3) to quantum dot (QD)/zinc oxide (ZnO) films.


RSC Advances ◽  
2021 ◽  
Vol 11 (20) ◽  
pp. 12051-12057
Author(s):  
Byung Jun Kim ◽  
Jun Hyung Jeong ◽  
Eui Young Jung ◽  
Tae Yeon Kim ◽  
Sungho Park ◽  
...  

Visible-light phototransistors have been fabricated based on the heterojunction of zinc oxide (ZnO) and titanium oxide (TiO2).


2020 ◽  
Vol 8 (1) ◽  
pp. 165-172 ◽  
Author(s):  
Dongwoo Kim ◽  
Yeong-gyu Kim ◽  
Byung Ha Kang ◽  
Jin Hyeok Lee ◽  
Jusung Chung ◽  
...  

Visible light detection of oxide phototransistors via insertion of an oxide-mesh inside the channel creating oxygen vacancies that increase subgap states.


2008 ◽  
Vol 62 (24) ◽  
pp. 4044-4046 ◽  
Author(s):  
E.T.Y. Lee ◽  
Y. Shimotsuma ◽  
M. Sakakura ◽  
M. Nishi ◽  
K. Miura ◽  
...  
Keyword(s):  

2008 ◽  
Vol 8 (11) ◽  
pp. 5854-5857 ◽  
Author(s):  
Guangping Zhu ◽  
Chunxiang Xu ◽  
Jing Zhu ◽  
Changgui Lu ◽  
Yiping Cui ◽  
...  

High density zinc oxide nanorods with uniform size were synthesized on (100) silicon substrate by vapor-phase transport method. The scanning electron microscopy images reveal that the nanorods have an average diameter of about 400 nm. The X-ray diffraction pattern demonstrates the wurtzite crystalline structure of the ZnO nanorods growing along [0001] direction. The single-photon excited photoluminescence presents a strong ultraviolet emission band at 394 nm and a weak visible emission band at 600 nm. When the ZnO nanorods were respectively pumped by various wavelength lasers from 520 nm to 700 nm, two-photon excited ultraviolet photoluminescence was observed. The dependence of the two-photon excited photoluminescence intensity on the excitation wavelength and power was investigated in detail.


Sign in / Sign up

Export Citation Format

Share Document