scholarly journals Ti3+ Defective SnS2/TiO2 Heterojunction Photocatalyst for Visible-Light Driven Reduction of CO2 to CO with High Selectivity

Catalysts ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 927 ◽  
Author(s):  
Aiguo Han ◽  
Mei Li ◽  
Shengbo Zhang ◽  
Xinli Zhu ◽  
Jinyu Han ◽  
...  

In recent years, defective TiO2-based composite nanomaterials have received much attention in the field of photocatalysis. In this work, TiB2 was used as a precursor to successfully prepare Ti3+ defective TiO2 (TiO2-B) with a truncated bipyramidal structure by a one-step method. Then, the SnS2 nanosheets were assembled onto the as-prepared TiO2-B through simple hydrothermal reaction. TiO2-B exhibits strong visible light absorption properties, but the recombination rate of the photo-generated electron-hole pair was high and does not exhibit ideal photocatalytic performance. Upon introducing SnS2, the heterojunction catalyst SnS2-Ti3+ defective TiO2 (SnS2/TiO2-B) not only possesses the strong light absorption from UV to visible light region, the lowest photo-generated charge recombination rate but also achieves a more negative conduction band potential than the reduction potential of CO2 to CO, and thereby, exhibits the significantly enhanced selectivity and yield of CO in photocatalytic CO2 reduction. Notably, SnS2/TiO2-B produces CO at a rate of 58 µmol·h−1·g−1 with CO selectivity of 96.3% under visible light irradiation, which is 2 and 19 times greater than those of alone TiO2-B and SnS2, respectively. Finally, a plausible photocatalytic mechanism on SnS2/TiO2-B was proposed that the electron transfer between TiO2 and SnS2 follows the Z-scheme mode. Our results present an effective way to gain highly efficient TiO2 based photocatalysts for CO2 reduction by combining different modification methods of TiO2 and make full use of the synergistic effects.

Catalysts ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 396
Author(s):  
Zhongli Zhou ◽  
Hang Yin ◽  
Yuling Zhao ◽  
Jianmin Zhang ◽  
Yahui Li ◽  
...  

The high recombination rate of the electron-hole pair on the surface of rutile TiO2 (RT) reduces its photocatalytic performance, although it has high thermodynamic stability and few internal grain defects. Therefore, it is necessary for RT to develop effective methods to reduce electron-hole pair recombination. In this study, magnetic α-Fe2O3/Rutile TiO2 self-assembled hollow spheres were fabricated via a facile hydrothermal reaction and template-free method. Based on the experimental result, phosphate concentration was found to play a crucial role in controlling the shape of these hollow α-Fe2O3/RT nanospheres, and the optimal concentration is 0.025 mM. Due to a heterojunction between α-Fe2O3 and RT, the electron-hole pair recombination rate was reduced, the as-synthesized hollow α-Fe2O3/RT nanospheres exhibited excellent photocatalysis in rhodamine B (RhB) photodegradation compared to α-Fe2O3 and RT under visible-light irradiation, and the degradation rate was about 16% (RT), 60% (α-Fe2O3), and 93% (α-Fe2O3/RT) after 100 min. Moreover, α-Fe2O3/RT showed paramagnetism and can be recycled to avoid secondary environmental pollution.


2021 ◽  
Author(s):  
Yanan Wang ◽  
Longxin Chen ◽  
Ting Liu ◽  
Duobin Chao

A discrete metallo–supramolecular assembly composed of six iron(II) cations and twelve redox–active terpyridine fragments has been developed for highly efficient visible–light–driven reduction of CO2 to CO with a TON of...


2020 ◽  
Vol 10 (20) ◽  
pp. 6800-6808
Author(s):  
Mier Wang ◽  
Changzheng Fan ◽  
Shuaijun Yang ◽  
Milan Liu ◽  
Jun Luo ◽  
...  

The narrow visible-light absorption range and a high recombination rate of photo-excited electrons and holes are the main reasons for the confined photocatalytic performance of graphitic carbon nitride (g-C3N4).


2019 ◽  
Author(s):  
Sahithi Ananthaneni ◽  
Rees Rankin

<div>Electrochemical reduction of CO2 to useful chemical and fuels in an energy efficient way is currently an expensive and inefficient process. Recently, low-cost transition metal-carbides (TMCs) are proven to exhibit similar electronic structure similarities to Platinum-Group-Metal (PGM) catalysts and hence can be good substitutes for some important reduction reactions. In this work, we test graphenesupported WC (Tungsten Carbide) nanocluster as an electrocatalyst for the CO2 reduction reaction. Specifically, we perform DFT studies to understand various possible reaction mechanisms and determine the lowest thermodynamic energy landscape of CO2 reduction to various products such as CO, HCOOH, CH3OH, and CH4. This in-depth study of reaction energetics could lead to improvements and develop more efficient electrocatalysts for CO2 reduction.<br></div>


Author(s):  
David Maria Tobaldi ◽  
Luc Lajaunie ◽  
ana caetano ◽  
nejc rozman ◽  
Maria Paula Seabra ◽  
...  

<div>Titanium dioxide is by far the most utilised semiconductor material for photocatalytic applications. Still, it is transparent to visible-light. Recently, it has been proved that a type-II band alignment for the rutile−anatase mixture would improve its visible-light absorption.</div><div>In this research paper we thoroughly characterised the real crystalline and amorphous phases of synthesised titanias – thermally treated at different temperatures to get distinct ratios of anatase-rutile-amorphous fraction – as well as that of three commercially available photocatalytic nano-TiO2. </div><div>The structural characterisation was done via advanced X-ray diffraction method, namely the Rietveld-RIR method, to attain a full quantitative phase analysis of the specimens. The microstructure was also investigated via an advanced X-ray method, the whole powder pattern modelling. These methods were validated combining advanced aberration-corrected scanning transmission microscopy and high-resolution electron energy-loss spectroscopy. The photocatalytic activity was assessed in the liquid- and gas-solid phase (employing rhodamine B and 4-chlorophenol, and isopropanol, respectively, as the organic substances to degrade) using a light source irradiating exclusively in the visible-range.</div><div>Optical spectroscopy showed that even a small fraction of rutile (2 wt%) is able to shift to lower energies the apparent optical band gap of an anatase-rutile mixed phase. But is this enough to attain a real photocatalytic activity promoted by merely visible-light?</div><div>We tried to give a reply to that question.</div><div>Photocatalytic activity results in the liquid-solid phase showed that a high surface hydroxylation led to specimen with superior visible light-induced catalytic activity (i.e. dye and ligand-to-metal charge transfer complexes sensitisation effects). That is: not photocatalysis <i>sensu-strictu</i>.</div><div>On the other hand, the gas-solid phase results showed that a higher amount of the rutile fraction (around 10 wt%), together with less recombination of the charge carriers, were more effective for an actual photocatalytic oxidation of isopropanol.</div>


Author(s):  
Rouwei Yan ◽  
Biao Xu ◽  
K. P. Annamalai ◽  
Tianlu Chen ◽  
Zhiming Nie ◽  
...  

Background : Renewable energies are in great demand because of the shortage of traditional fossil energy and the associated environmental problems. Ni and Se-based materials are recently studied for energy storage and conversion owing to their reasonable conductivities and enriched redox activities as well as abundance. However, their electrochemical performance is still unsatisfactory for practical applications. Objective: To enhance the capacitance storage of Ni-Se materials via modification of their physiochemical properties with Fe. Methods: A two-step method was carried out to prepare FeNi-Se loaded reduced graphene oxide (FeNi-Se/rGO). In the first step, metal salts and graphene oxide (GO) were mixed under basic condition and autoclaved to obtain hydroxide intermediates. As a second step, selenization process was carried out to acquire FeNi-Se/rGO composites. Results: X-ray diffraction measurements (XRD), nitrogen adsorption at 77K, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were carried out to study the structures, porosities and the morphologies of the composites. Electrochemical measurements revealed that FeNi-Se/rGO notably enhanced capacitance than the NiSe/G composite. This enhanced performance was mainly attributed to the positive synergistic effects of Fe and Ni in the composites, which not only had influence on the conductivity of the composite but also enhanced redox reactions at different current densities. Conclusion: NiFe-Se/rGO nanocomposites were synthesized in a facile way. The samples were characterized physicochemically and electrochemically. NiFeSe/rGO giving much higher capacitance storage than the NiSe/rGO explained that the nanocomposites could be an electrode material for energy storage device applications.


Sign in / Sign up

Export Citation Format

Share Document