scholarly journals Human Adipose-Derived Stem Cells in Madelung’s Disease: Morphological and Functional Characterization

Cells ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 44
Author(s):  
Federica Caponnetto ◽  
Ivana Manini ◽  
Michela Bulfoni ◽  
Nicola Zingaretti ◽  
Giovanni Miotti ◽  
...  

Madelung Disease (MD) is a syndrome characterized by the accumulation of aberrant symmetric adipose tissue deposits. The etiology of this disease is yet to be elucidated, even though the presence of comorbidities, either genetic or environmental, has been reported. For this reason, establishing an in vitro model for MD is considered crucial to get insights into its physiopathology. We previously established a protocol for isolation and culture of stem cells from diseased tissues. Therefore, we isolated human adipose-derived stem cells (ASC) from MD patients and compared these cells with those isolated from healthy subjects in terms of surface phenotype, growth kinetic, adipogenic differentiation potential, and molecular alterations. Moreover, we evaluated the ability of the MD-ASC secretome to affect healthy ASC. The results reported a difference in the growth kinetic and surface markers of MD-ASC compared to healthy ASC but not in adipogenic differentiation. The most commonly described mitochondrial mutations were not observed. Still, MD-ASC secretome was able to shift the healthy ASC phenotype to an MD phenotype. This work provides evidence of the possibility of exploiting a patient-based in vitro model for better understanding MD pathophysiology, possibly favoring the development of novel target therapies.

2010 ◽  
Vol 22 (1) ◽  
pp. 351
Author(s):  
A. J. Maki ◽  
I. Omelogu ◽  
E. Monaco ◽  
M. E. McGee-Lawrence ◽  
R. M. Bradford ◽  
...  

During winter hibernation, grizzly bears (Ursus arctos horribilis) do not eat but instead rely on internal fat stores as a primary source of metabolic energy. The resulting seasonal fluctuations in appetite and body mass make the grizzly bear a naturally occurring animal model for human conditions such as obesity and anorexia. An in vitro model of hibernating bear stem cells might enhance our understanding of processes such as stem cell proliferation and differentiation. Mesenchymal stem cells, derived from bone marrow and adipose tissue among others, differentiate into adipocytes and might play important roles in energy metabolism. In the current study, we examined the in vitro viability and morphology of mesenchymal stem cells isolated from grizzly bear adipose tissue (ADSC) and bone marrow (BMSC); these ADSC and BMSCs underwent adipogenic differentiation for 0, 7, 14, 21, and 28 days. Bone marrow stem cells and ADSC were isolated using mechanical disaggregation, collagenase digestion, centrifugation, and plating onto tissue culture polystyrene. Cell viability and proliferation was quantified using the colony forming unit assay and a hemocytometer. Both stem cell types were differentiated into adipocytes using 10 μM insulin, 1 μM dexamethasone, and 0.5 mM isobutylmethylxanthine (all Sigma- Aldrich, St. Louis, MO, USA) with the addition of 10% fetal bovine (FBS) or bear serum from the active feeding period. Adipogenic differentiation was confirmed using Oil Red O and quantified using ImageJ. Statistical analysis was performed using an unpaired t-test between treatments of the same time point. All cells were isolated within 28 h of tissue harvest. Adipose-derived stem cells formed an average of 11 colonies (0.011%), whereas BMSC formed 1.5 colonies (0.0015%) per 100 000 cells. Doubling time forADSC was approximately 54 h in 10% FBS. BothADSC and BMSC had an initial spindle-shaped morphology, which gradually became more rounded during adipogenic differentiation. For bear serum at Day 28, ADSC had a significantly (P < 0.01) greater stained area per cell than did BMSC. In summary, both types of mesenchymal stem cells successfully differentiated into adipocytes and maintained viability. In conclusion, grizzly bear mesenchymal stem cells canbesuccessfully isolated, expanded, and differentiated in culture. These results allow for future studies using the bear as an in vitro model for fat metabolism during hibernation and active periods. This work was partially supported by the Carle Foundation Hospital, the Intel Scholar’s Research Program, USDA Multi-State Research Project W1171, and the Illinois Regenerative Medicine Institute (IDPH # 63080017). In addition, the authors would like to thank Agatha Luszpak for support with the analysis.


Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 430 ◽  
Author(s):  
Sara Al-Ghadban ◽  
Zaidmara T. Diaz ◽  
Hallie J. Singer ◽  
Karya B. Mert ◽  
Bruce A. Bunnell

Lipedema is a painful loose connective tissue disorder characterized by a bilaterally symmetrical fat deposition in the lower extremities. The goal of this study was to characterize the adipose-derived stem cells (ASCs) of healthy and lipedema patients by the expression of stemness markers and the adipogenic and osteogenic differentiation potential. Forty patients, 20 healthy and 20 with lipedema, participated in this study. The stromal vascular fraction (SVF) was obtained from subcutaneous thigh (SVF-T) and abdomen (SVF-A) fat and plated for ASCs characterization. The data show a similar expression of mesenchymal markers, a significant increase in colonies (p < 0.05) and no change in the proliferation rate in ASCs isolated from the SVF-T or SVF-A of lipedema patients compared with healthy patients. The leptin gene expression was significantly increased in lipedema adipocytes differentiated from ASCs-T (p = 0.04) and the PPAR-γ expression was significantly increased in lipedema adipocytes differentiated from ASCs-A (p = 0.03) compared to the corresponding cells from healthy patients. No significant changes in the expression of genes associated with inflammation were detected in lipedema ASCs or differentiated adipocytes. These results suggest that lipedema ASCs isolated from SVF-T and SVF-A have a higher adipogenic differentiation potential compared to healthy ASCs.


2021 ◽  
Vol 11 (8) ◽  
pp. 738
Author(s):  
Melissa D. Mercado-Rubio ◽  
Erick Pérez-Argueta ◽  
Alejandro Zepeda-Pedreguera ◽  
Fernando J. Aguilar-Ayala ◽  
Ricardo Peñaloza-Cuevas ◽  
...  

Dental tissue-derived mesenchymal stem cells (DT-MSCs) are a promising resource for tissue regeneration due to their multilineage potential. Despite accumulating data regarding the biology and differentiation potential of DT-MSCs, few studies have investigated their adipogenic capacity. In this study, we have investigated the mesenchymal features of dental pulp stem cells (DPSCs), as well as the in vitro effects of different adipogenic media on these cells, and compared them to those of periodontal ligament stem cells (PLSCs) and dental follicle stem cells (DFSCs). DFSC, PLSCs, and DPSCs exhibit similar morphology and proliferation capacity, but they differ in their self-renewal ability and expression of stemness markers (e.g OCT4 and c-MYC). Interestingly, DFSCs and PLSCs exhibited more lipid accumulation than DPSCs when induced to adipogenic differentiation. In addition, the mRNA levels of adipogenic markers (PPAR, LPL, and ADIPOQ) were significantly higher in DFSCs and PLSCs than in DPSCs, which could be related to the differences in the adipogenic commitment in those cells. These findings reveal that the adipogenic capacity differ among DT-MSCs, features that might be advantageous to increasing our understanding about the developmental origins and regulation of adipogenic commitment.


2011 ◽  
Vol 43 (2) ◽  
pp. 91-100 ◽  
Author(s):  
Cornelia Hildebrandt ◽  
Heiko Büth ◽  
Hagen Thielecke

2019 ◽  
Vol 6 (6) ◽  
pp. 3213-3221
Author(s):  
Hieu Liem Pham ◽  
Phuc Van Pham

Introduction: The senescence of stem cells is the primary reason that causes aging of stem cell-containing tissues. Some hypotheses have suggested that high glucose concentration in diabetic patients is the main factor that causes senescence of cells in those patients. This study aimed to evaluate the effects of high glucose concentrations on the senescence of adipose-derived stem cells (ADSCs). Methods: ADSCs were isolated and expanded from human adipose tissues. They were characterized and confirmed as mesenchymal stem cells (MSCs) by expression of surface markers, their shape, and in vitro differentiation potential. They were then cultured in 3 different media- that contained 17.5 mM, 35 mM, or 55 mM of D-glucose. The senescent status of ADSCs was recorded by the expression of the enzyme beta-galactosidase, cell proliferation, and doubling time. Real-time RT-PCR was used to evaluate the expression of p16, p21, p53 and mTOR. Results: The results showed that high glucose concentrations (35 mM and 55 mM) in the culture medium induced senescence of human ADSCs. The ADSCs could progress to the senescent status quicker than those cultured in the lower glucose-containing medium (17.5 mM). The senescent state was related to the up-regulation of p16 and mTOR genes. Conclusion: These results suggest that high glucose in culture medium can trigger the expression of p16 and mTOR genes which cause early senescence in ADSCs. Therefore, ADSCs should be cultured in low glucose culture medium, or normal glucose concentration, to extend their life in vitro as well as in vivo.  


2016 ◽  
Vol 364 (3) ◽  
pp. 573-584 ◽  
Author(s):  
Patrick Wuchter ◽  
Rainer Saffrich ◽  
Stefan Giselbrecht ◽  
Cordula Nies ◽  
Hanna Lorig ◽  
...  

2021 ◽  
Vol 67 (1) ◽  
pp. 34-41
Author(s):  
E.D. Khilazheva ◽  
A.V. Morgun ◽  
E.B. Boytsova ◽  
A.I. Mosiagina ◽  
A.N. Shuvaev ◽  
...  

In the central nervous system of mammals, there are specialized areas in which neurogenesis — neurogenic niches — is observed in the postnatal period. It is believed that astrocytes in the composition of neurogenic niches play a significant role in the regulation of neurogenesis, and therefore they are considered as a promising “target” for the possible control of neurogenesis, including the use of optogenetics. In the framework of this work, we formed an in vitro model of a neurogenic niche, consisting of cerebral endothelial cells, astrocytes and neurospheres. Astrocytes in the neurogenic niche model expressed canalorodopsin ChR2 and underwent photoactivation. The effect of photoactivated astrocytes on the expression profile of neurogenic niche cells was evaluated using immunocytochemical analysis methods. It was found that intact astrocytes in the composition of the neurogenic niche contribute to neuronal differentiation of stem cells, as well as the activation of astroglia expressing photosensitive proteins, changes the expression of molecules characterized by intercellular interactions of pools of resting and proliferating cells in the composition of the neurogenic niche with the participation of NAD+ (Cx43, CD38, CD157), lactate (MCT1). In particular, the registered changes reflect a violation of the paracrine intercellular interactions of two subpopulations of cells, one of which acts as a source of NAD+, and the second as a consumer of NAD+ to ensure the processes of intracellular signal transduction; a change in the mechanisms of lactate transport due to aberrant expression of the lactate transporter MCT1 in cells forming a pool of cells developing along the neuronal path of differentiation. In general, with photostimulation of niche astrocytes, the total proliferative activity increases mainly due to neural progenitor cells, but not neural stem cells. Thus, optogenetic activation of astrocytes can become a promising tool for controlling the activity of neurogenesis processes and the formation of a local proneurogenic microenvironment in an in vitro model of a neurogenic niche.


2020 ◽  
Vol 21 (24) ◽  
pp. 9513
Author(s):  
Patricia Garrido-Pascual ◽  
Ana Alonso-Varona ◽  
Begoña Castro ◽  
María Burón ◽  
Teodoro Palomares

Oxidative stress associated with neuroinflammation is a key process involved in the pathophysiology of neurodegenerative diseases, and therefore, has been proposed as a crucial target for new therapies. Recently, the therapeutic potential of human adipose-derived stem cells (hASCs) has been investigated as a novel strategy for neuroprotection. These cells can be preconditioned by exposing them to mild stress in order to improve their response to oxidative stress. In this study, we evaluate the therapeutic potential of hASCs preconditioned with low doses of H2O2 (called HC016 cells) to overcome the deleterious effect of oxidative stress in an in vitro model of oligodendrocyte-like cells (HOGd), through two strategies: i, the culture of oxidized HOGd with HC016 cell-conditioned medium (CM), and ii, the indirect co-culture of oxidized HOGd with HC016 cells, which had or had not been exposed to oxidative stress. The results demonstrated that both strategies had reparative effects, oxidized HC016 cell co-culture being the one associated with the greatest recovery of the damaged HOGd, increasing their viability, reducing their intracellular reactive oxygen species levels and promoting their antioxidant capacity. Taken together, these findings support the view that HC016 cells, given their reparative capacity, might be considered an important breakthrough in cell-based therapies.


Sign in / Sign up

Export Citation Format

Share Document