scholarly journals Variability of Human rDNA

Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 196
Author(s):  
Evgeny Smirnov ◽  
Nikola Chmúrčiaková ◽  
František Liška ◽  
Pavla Bažantová ◽  
Dušan Cmarko

In human cells, ribosomal DNA (rDNA) is arranged in ten clusters of multiple tandem repeats. Each repeat is usually described as consisting of two parts: the 13 kb long ribosomal part, containing three genes coding for 18S, 5.8S and 28S RNAs of the ribosomal particles, and the 30 kb long intergenic spacer (IGS). However, this standard scheme is, amazingly, often altered as a result of the peculiar instability of the locus, so that the sequence of each repeat and the number of the repeats in each cluster are highly variable. In the present review, we discuss the causes and types of human rDNA instability, the methods of its detection, its distribution within the locus, the ways in which it is prevented or reversed, and its biological significance. The data of the literature suggest that the variability of the rDNA is not only a potential cause of pathology, but also an important, though still poorly understood, aspect of the normal cell physiology.

Genetics ◽  
2002 ◽  
Vol 162 (3) ◽  
pp. 1435-1444 ◽  
Author(s):  
Robert M Stupar ◽  
Junqi Song ◽  
Ahmet L Tek ◽  
Zhukuan Cheng ◽  
Fenggao Dong ◽  
...  

Abstract The heterochromatin in eukaryotic genomes represents gene-poor regions and contains highly repetitive DNA sequences. The origin and evolution of DNA sequences in the heterochromatic regions are poorly understood. Here we report a unique class of pericentromeric heterochromatin consisting of DNA sequences highly homologous to the intergenic spacer (IGS) of the 18S•25S ribosomal RNA genes in potato. A 5.9-kb tandem repeat, named 2D8, was isolated from a diploid potato species Solanum bulbocastanum. Sequence analysis indicates that the 2D8 repeat is related to the IGS of potato rDNA. This repeat is associated with highly condensed pericentromeric heterochromatin at several hemizygous loci. The 2D8 repeat is highly variable in structure and copy number throughout the Solanum genus, suggesting that it is evolutionarily dynamic. Additional IGS-related repetitive DNA elements were also identified in the potato genome. The possible mechanism of the origin and evolution of the IGS-related repeats is discussed. We demonstrate that potato serves as an interesting model for studying repetitive DNA families because it is propagated vegetatively, thus minimizing the meiotic mechanisms that can remove novel DNA repeats.


1987 ◽  
Vol 7 (1) ◽  
pp. 314-325
Author(s):  
C A Harrington ◽  
D M Chikaraishi

The transcriptional activity of spacer sequences flanking the rat 45S ribosomal DNA (rDNA) gene were studied. Nascent RNA labeled in in vitro nuclear run-on reactions hybridized with both 5' and 3' spacer regions. The highest level of hybridization was seen with an rDNA fragment containing tandem repeats of a 130-base-pair sequence upstream of the 45S rRNA initiation site. Synthesis of RNA transcripts homologous to this internally repetitious spacer region was insensitive to high levels of alpha-amanitin, suggesting that it is mediated by RNA polymerase I. Analysis of steady-state RNA showed that these transcripts were present at extremely low levels in vivo relative to precursor rRNA transcripts. In contrast, precursor and spacer run-on RNAs were synthesized at similar levels. This suggests that spacer transcripts are highly unstable in vivo; therefore, it may be the process of transcription rather than the presence of spacer transcripts that is functionally important. Transcription in this upstream rDNA region may be involved in regulation of 45S rRNA synthesis in rodents, as has been suggested previously for frog rRNA. In addition, the presence of transcriptional activity in other regions of the spacer suggests that some polymerase I molecules may transcribe through the spacer from one 45S gene to the next on rodent rDNA.


Genetics ◽  
1995 ◽  
Vol 141 (4) ◽  
pp. 1327-1337
Author(s):  
T J Crease

Abstract Nucleotide variation was surveyed in 21 subrepeat arrays from the ribosomal DNA intergenic spacer of three Daphnia pulex populations. Eighteen of these arrays contained four subrepeats. Contrary to expectations, each of the four positions within the array had a different consensus sequence. However, gene conversion, involving sequences less than the length of a subrepeat, had occurred between subrepeats in different positions. Three arrays had more than four subrepeats and were undoubtedly generated by unequal crossing over between standard-length arrays. The data strongly suggested that most unequal exchanges between arrays are intrachromosomal and that they occur much less frequently than unequal exchanges at the level of the entire rDNA repeat. Strong associations among variants at different positions allowed the recognition of five groups of arrays, two of which were found in more than one population. Five of the seven individuals surveyed had arrays from more than one group. Analysis of the distribution of nucleotide variation suggested that the populations were quite divergent, a result that is concordant with previous surveys of allozyme and mitochondrial DNA variation. It was suggested that some of the subrepeat array types are quite old, at least predating the recolonization of pond habitats in the midwestern United States after the last glaciation.


Author(s):  
Н.Н. Вейко ◽  
Е.С. Ершова ◽  
М.С. Конькова ◽  
Е.М. Малиновская ◽  
С.В. Костюк

Пространственная организация хроматина важна для нормального функционирования клетки. На архитектуру ядра влияют размеры отдельных фрагментов генома, которые коррелируют с числом копий этих фрагментов. Перемещение локусов 1q12 от поверхности ядра в центральные области является ключевой стадией адаптивного ответа клетки на стресс. Мы предположили, что размер локусов 1q12, который коррелирует с содержанием повтора f-SatIII, может влиять на перемещение этих участков хроматина в ядре. Методом FISH на выделенных лимфоцитах показали, что в контроле локусы 1q12 расположены вблизи поверхности ядра, в ядрах лимфоцитов больных шизофренией (БШ) и облученных контрольных клеток локусы 1q12 расположены в центральных районах ядра. Длительное культивирование облученных лимфоцитов сопровождалось гибелью клеток, и снижением содержания f-SatIII в ДНК. Очевидно, что погибали клетки с большим размером 1q12 (много f-SatIII), обогащая популяцию клетками с низким содержанием f-SatIII. В клетках БШ и в облученных клетках мы обнаружили повышение уровня РНК SATIII. Размеры гетерохроматина 1q12 в клетках человека могут влиять на процессы пролиферации и ответа клетки на стресс. Количественный полиморфизм тандемных повторов генома - один из эпигенетических механизмов регуляции ответа клеток на окислительный стресс. The spatial organization of chromatin is important for the normal functioning of the cell. Genome repeat cluster sizes can affect the chromatin spatial configuration and function. The 1q12 heterochromatin loci movement from the periphery to the center of the nucleus is the cells’ universal response to various types of stress. We hypothesized that a large 1q12 domain could affect chromatin movement, thereby inhibiting adaptive response (AR). Using the FISH method, we shown that in the control, 1q12 loci are located near the surface of the nucleus; in the lymphocyte nuclei of schizophrenic patients and irradiated control cells, 1q12 loci are located in the central regions of the nucleus. During prolonged cultivation, the irradiated cells with a large Large f-SatIII amount die and the population is enriched with the cells with low f-SatIII content. In intact SZ patients’ lymphocytes and in irradiated cells we found an increase in SATIII RNA levels. The size of heterochromatin 1q12 loci in human cells can affect to the proliferation and cells’ adaptive response to stress. Quantitative polymorphism of tandem genome repeats is one of the epigenetic mechanisms of genome expression’s regulation.


2017 ◽  
Vol 2017 ◽  
pp. 1-5 ◽  
Author(s):  
Hiroshi Sato ◽  
Hiroki Kato ◽  
Haruyoshi Yamaza ◽  
Keiji Masuda ◽  
Huong Thi Nguyen Nguyen ◽  
...  

Embryonic trisomy leads to abortion or congenital genetic disorders in humans. The most common autosomal chromosome abnormalities are trisomy of chromosomes 13, 18, and 21. Although alteration of gene dosage is thought to contribute to disorders caused by extra copies of chromosomes, genes associated with specific disease phenotypes remain unclear. To generate a normal cell from a trisomic cell as a means of etiological analysis or candidate therapy for trisomy syndromes, we developed a system to eliminate a targeted chromosome from human cells. Chromosome 21 was targeted by integration of a DNA cassette in HeLa cells that harbored three copies of chromosome 21. The DNA cassette included two inverted loxP sites and a herpes simplex virus thymidine kinase (HSV-tk) gene. This system causes missegregation of chromosome 21 after expression of Cre recombinase and subsequently enables the selection of cells lacking the chromosome by culturing in a medium that includes ganciclovir (GCV). Cells harboring only two copies of chromosome 21 were efficiently induced by transfection of a Cre expression vector, indicating that this approach is useful for eliminating a targeted chromosome.


Sign in / Sign up

Export Citation Format

Share Document