scholarly journals Phytoremediation of CYN, MC-LR and ANTX-a from Water by the Submerged Macrophyte Lemna trisulca

Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 699
Author(s):  
Małgorzata Kucała ◽  
Michał Saładyga ◽  
Ariel Kaminski

Cyanotoxins are harmful to aquatic and water-related organisms. In this study, Lemna trisulca was tested as a phytoremediation agent for three common cyanotoxins produced by bloom-forming cyanobacteria. Cocultivation of L. trisulca with Dolichospermum flos-aquae in BG11 medium caused a release of the intracellular pool of anatoxin-a into the medium and the adsorption of 92% of the toxin by the plant—after 14 days, the total amount of toxin decreased 3.17 times. Cocultivation with Raphidopsis raciborskii caused a 2.77-time reduction in the concentration of cylindrospermopsin (CYN) in comparison to the control (62% of the total pool of CYN was associated with the plant). The greatest toxin limitation was noted for cocultivation with Microcystis aeruginosa. After two weeks, the microcystin-LR (MC-LR) concentration decreased more than 310 times. The macrophyte also influenced the growth and development of cyanobacteria cells. Overall, 14 days of cocultivation reduced the biomass of D. flos-aquae, M. aeruginosa, and R. raciborskii by 8, 12, and 3 times, and chlorophyll a concentration in comparison to the control decreased by 17.5, 4.3, and 32.6 times, respectively. Additionally, the macrophyte stabilized the electrical conductivity (EC) and pH values of the water and affected the even uptake of cations and anions from the medium. The obtained results indicate the biotechnological potential of L. trisulca for limiting the development of harmful cyanobacterial blooms and their toxicity.

Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2147
Author(s):  
Anjali Krishnan ◽  
Xiaozhen Mou

Harmful cyanobacterial blooms pose an environmental health hazard due to the release of water-soluble cyanotoxins. One of the most prevalent cyanotoxins in nature is microcystins (MCs), a class of cyclic heptapeptide hepatotoxins, and they are produced by several common cyanobacteria in aquatic environments. Once released from cyanobacterial cells, MCs are subjected to physical chemical and biological transformations in natural environments. MCs can also be taken up and accumulated in aquatic organisms and their grazers/predators and induce toxic effects in several organisms, including humans. This brief review aimed to summarize our current understanding on the chemical structure, exposure pathway, cytotoxicity, biosynthesis, and environmental transformation of microcystins.


2013 ◽  
Vol 31 (3) ◽  
pp. 356-360 ◽  
Author(s):  
Fernanda Ludwig ◽  
Dirceu M Fernandes ◽  
Poliana RD Mota ◽  
Roberto L Villas Bôas

The quality and the profitability on floriculture are intimately linked to the adequate plant nutrition. In the present research we aimed to evaluate the electrical conductivity (EC) and pH of the substrate solution on four different gerbera cultivars subjected to fertigation, with two nutritive solutions. The experiment was carried out in a greenhouse, from May to July 2006, on the Universidade Estadual Paulista, Botucatu, São Paulo state, Brazil. The experiment was carried out under an experimental design of random blocks, in 4×2 factorial arrangement, with four Gerbera cultivars (Cherry, Golden Yellow, Salmon Rose and Orange) and two nutritive solution concentrations: 0.92 and 1.76 dS m-1 EC) during the vegetative stage, and 1.07 and 2.04 dS m-1 during the reproductive stage (S1 and S2, respectively). The nutrients were applied through fertigation, manually performed every day. The EC and pH values of the substrate solution were evaluated weekly, using the 'pourthru' method. Orange and Cherry cultivars had, respectively, the highest and the lowest electrical conductivity of the substrate solution, and Cherry was the most efficient on the nutrient uptake. The solution S2 showed a trend to accumulate salts in the substrate, but without visual symptoms of plant toxicity, leading to the lowest pH values. The 'pourthru' method was efficient when compared to the 1:2 method and can be adopted for substrate solution analysis in gerbera culture.


2008 ◽  
Vol 68 (1) ◽  
pp. 115-122 ◽  
Author(s):  
MB. Cunha-Santino ◽  
SP. Gouvêa ◽  
I. Bianchini Jr ◽  
AAH. Vieira

This study aimed to discuss and describe the oxygen consumption during aerobic mineralization of organic products (cells and excretion products) from five unialgal cultures: Cryptomonas sp., Microcystis aeruginosa, Anabaena spiroides, Thalassiosira sp. and Aulacoseira granulata. These species were isolated from Barra Bonita reservoir (22º 29’ S and 48º 34’ W) and cultivated in the laboratory. From each culture, two decomposition chambers were prepared; each chamber contained about 130 mg.L-1 of carbon from water samples of the reservoir. The chambers were aerated and incubated in the dark at 20.0 ºC. The concentration of dissolved oxygen, pH values and electrical conductivity of the solutions were determined during a period of 10 days. The results indicated increases in oxygen consumption for all the solutions studied and also for electrical conductivity. The pH values presented a decreasing tendency throughout the experiment. Oxygen consumption varied from 43 (Aulacoseira granulata chamber) to 345 mg O2 g-1 C (Anabaena spiroides chamber). Decrease in pH values was probably due to increase in CO2 concentration from microbial respiration. Increase in electrical conductivity might be due to the liberation of ions during decomposition. The results demonstrate the potentiality of the studied genera in influencing oxygen availability followed by a die-off event. It also indicates the possibility of changing of the electrical conductivity and pH values in the water column due the aerobic algae mineralization.


2021 ◽  
Vol 9 (7) ◽  
pp. 1495
Author(s):  
Tim Piel ◽  
Giovanni Sandrini ◽  
Gerard Muyzer ◽  
Corina P. D. Brussaard ◽  
Pieter C. Slot ◽  
...  

Applying low concentrations of hydrogen peroxide (H2O2) to lakes is an emerging method to mitigate harmful cyanobacterial blooms. While cyanobacteria are very sensitive to H2O2, little is known about the impacts of these H2O2 treatments on other members of the microbial community. In this study, we investigated changes in microbial community composition during two lake treatments with low H2O2 concentrations (target: 2.5 mg L−1) and in two series of controlled lake incubations. The results show that the H2O2 treatments effectively suppressed the dominant cyanobacteria Aphanizomenon klebahnii, Dolichospermum sp. and, to a lesser extent, Planktothrix agardhii. Microbial community analysis revealed that several Proteobacteria (e.g., Alteromonadales, Pseudomonadales, Rhodobacterales) profited from the treatments, whereas some bacterial taxa declined (e.g., Verrucomicrobia). In particular, the taxa known to be resistant to oxidative stress (e.g., Rheinheimera) strongly increased in relative abundance during the first 24 h after H2O2 addition, but subsequently declined again. Alpha and beta diversity showed a temporary decline but recovered within a few days, demonstrating resilience of the microbial community. The predicted functionality of the microbial community revealed a temporary increase of anti-ROS defenses and glycoside hydrolases but otherwise remained stable throughout the treatments. We conclude that the use of low concentrations of H2O2 to suppress cyanobacterial blooms provides a short-term pulse disturbance but is not detrimental to lake microbial communities and their ecosystem functioning.


Author(s):  
Igor Linkov ◽  
A. Fristachi ◽  
F. K. Satterstrom ◽  
A. Shifrin ◽  
J. Steevens ◽  
...  

Harmful Algae ◽  
2021 ◽  
Vol 110 ◽  
pp. 102127
Author(s):  
Hai Xu ◽  
Boqiang Qin ◽  
Hans W. Paerl ◽  
Kai Peng ◽  
Qingji Zhang ◽  
...  

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Suqin Gao ◽  
Yun Kong ◽  
Jing Yu ◽  
Lihong Miao ◽  
Lipeng Ji ◽  
...  

Abstract Background Harmful cyanobacterial blooms have attracted wide attention all over the world as they cause water quality deterioration and ecosystem health issues. Microcystis aeruginosa associated with a large number of bacteria is one of the most common and widespread bloom-forming cyanobacteria that secret toxins. These associated bacteria are considered to benefit from organic substrates released by the cyanobacterium. In order to avoid the influence of associated heterotrophic bacteria on the target cyanobacteria for physiological and molecular studies, it is urgent to obtain an axenic M. aeruginosa culture and further investigate the specific interaction between the heterotroph and the cyanobacterium. Results A traditional and reliable method based on solid-liquid alternate cultivation was carried out to purify the xenic cyanobacterium M. aeruginosa FACHB-905. On the basis of 16S rDNA gene sequences, two associated bacteria named strain B905–1 and strain B905–2, were identified as Pannonibacter sp. and Chryseobacterium sp. with a 99 and 97% similarity value, respectively. The axenic M. aeruginosa FACHB-905A (Microcystis 905A) was not able to form colonies on BG11 agar medium without the addition of strain B905–1, while it grew well in BG11 liquid medium. Although the presence of B905–1 was not indispensable for the growth of Microcystis 905A, B905–1 had a positive effect on promoting the growth of Microcystis 905A. Conclusions The associated bacteria were eliminated by solid-liquid alternate cultivation method and the axenic Microcystis 905A was successfully purified. The associated bacterium B905–1 has the potentiality to promote the growth of Microcystis 905A. Moreover, the purification technique for cyanobacteria described in this study is potentially applicable to a wider range of unicellular cyanobacteria.


Author(s):  
Hae-Kyung Park ◽  
Mi-Ae Kwon ◽  
Hae-Jin Lee ◽  
Jonghee Oh ◽  
Su-Heon Lee ◽  
...  

Aphanizomenon spp. have formed harmful cyanobacterial blooms in the Nakdong River during spring, autumn, and now in winter, and the expansion of blooming period and area, associated with the global warming is predicted. The genus Aphanizomenon has been described to produce harmful secondary metabolites such as off-flavors and cyanotoxins. Therefore, the production of harmful secondary metabolites from the Aphanizomenon blooms in the Nakdong River needs to be monitored to minimize the risk to both water quality and public health. Here, we sampled the cyanobacterial blooms in the Nakdong River and isolated ten Aphanizomenon strains, morphologically classified as Aphanizomenon flos-aquae Ralfs ex Bornet et Flahault 1888. Phylogenetic analysis using 16S rRNA and internal transcribed spacer (ITS) region nucleotide sequences confirmed this classification. We further verified the harmful secondary metabolites-producing potential of A. flos-aquae isolates and water samples containing cyanobacterial blooms using PCR with specific primer sets for genes involved in biosynthesis of off-flavor metabolites (geosmin) and toxins (microcystins, saxitoxins and cylindrospermopsins). It was confirmed that these metabolite biosynthesis genes were not identified in all isolates and water samples containing only Aphanizomenon spp. Thus, it is likely that there is a low potential for the production of off-flavor metabolites and cyanotoxins in Aphanizomenon blooms in the Nakdong River.


2019 ◽  
Vol 31 ◽  
Author(s):  
Jéssica Nayara de Carvalho Leite ◽  
Vanessa Becker

Abstract Aim The aim of this study was to analyze the water quality of a tropical, semi-arid reservoir after a reflooding. In terms of impact on water quality after a drought event, it is expected that there will be improvements with the reflooding. Less algal biomass, increased water transparency, decreased turbidity and low nutrient concentration. Methods This study was performed in a tropical, semi-arid man-made lake (Dourado Reservoir), during an extended drought period. This study consisted of a comparison of three distinct periods determined by water accumulation. The limnological variables, including water transparency, turbidity, electrical conductivity, pH, total phosphorus, soluble reactive phosphorus, and chlorophyll-a were analyzed. A principal component analysis (PCA) was also performed to verify the patterns of the variables in relation to the sample units in the studied periods. Results After water renewal, there was an expressive reduction in chlorophyll-a. Electrical conductivity, pH, and turbidity variables also reduced after the reflooding, indicating an improvement in water quality. There was no reduction in total phosphorus and soluble reactive phosphorus after the reflooding compared to the previous periods. Conclusions The significant reduction in algal biomass after reflooding in Dourado indicates water quality improvement in terms of eutrophication due to the change of the trophic state from eutrophic to mesotrophic.


Sign in / Sign up

Export Citation Format

Share Document