scholarly journals SP-1, a Serine Protease from the Gut Microbiota, Influences Colitis and Drives Intestinal Dysbiosis in Mice

Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2658
Author(s):  
Aicha Kriaa ◽  
Amin Jablaoui ◽  
Soufien Rhimi ◽  
Souha Soussou ◽  
Héla Mkaouar ◽  
...  

Increased protease activity has been linked to the pathogenesis of IBD. While most studies have been focusing on host proteases in gut inflammation, it remains unclear how to address the potential contribution of their bacterial counterparts. In the present study, we report a functional characterization of a newly identified serine protease, SP-1, from the human gut microbiota. The serine protease repertoire of gut Clostridium was first explored, and the specificity of SP-1 was analyzed using a combinatorial chemistry method. Combining in vitro analyses and a mouse model of colitis, we show that oral administration of recombinant bacteria secreting SP-1 (i) compromises the epithelial barrier, (ii) alters the microbial community, and (ii) exacerbates colitis. These findings suggest that gut microbial protease activity may constitute a valuable contributor to IBD and could, therefore, represent a promising target for the treatment of the disease.

2001 ◽  
Vol 285 (4) ◽  
pp. 863-872 ◽  
Author(s):  
Marie-Thérèse Château ◽  
Véronique Robert-Hebmann ◽  
Christian Devaux ◽  
Jean-Bernard Lazaro ◽  
Bruno Canard ◽  
...  

2021 ◽  
Author(s):  
Riho Tateyama-Makino ◽  
Mari Abe-Yutori ◽  
Taku Iwamoto ◽  
Kota Tsutsumi ◽  
Motonori Tsuji ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters host cells when the viral spike protein is cleaved by transmembrane protease serine 2 (TMPRSS2) after binding to the host angiotensin-converting enzyme 2 (ACE2). Since ACE2 and TMPRSS2 are expressed in the mucosa of the tongue and gingiva, the oral cavity seems like it is an entry point for SARS-CoV-2. Daily oral care using mouthwash seems to play an important role in preventing SARS-CoV-2 infection. However, the relationship between daily oral care and the mechanisms of virus entry into host cells is unclear. In this study, we evaluated the inhibitory effects of ingredients that are generally contained in toothpaste and mouthwash on the interaction between the spike protein and ACE2 and on the serine protease activity of TMPRSS2 using an enzyme-linked immunosorbent assay and in vitro enzyme assay, respectively. Both assays detected inhibitory effects of sodium tetradecene sulfonate, sodium N-lauroyl-N-methyltaurate, sodium N-lauroylsarcosinate, sodium dodecyl sulfate, and copper gluconate. Molecular docking simulations suggested that these ingredients could bind to the inhibitor-binding site of ACE2. In addition, tranexamic acid and 6-aminohexanoic acid, which act as serine protease inhibitors, exerted inhibitory effects on TMPRSS2 protease activity. Further experimental and clinical studies are needed to further elucidate these mechanisms. Our findings support the possibility that toothpaste and mouthwash contain ingredients that inhibit SARS-CoV-2 infection.


2009 ◽  
Vol 8 (4) ◽  
pp. 470-477 ◽  
Author(s):  
Jane W. Wanyiri ◽  
Patsharaporn Techasintana ◽  
Roberta M. O'Connor ◽  
Michael J. Blackman ◽  
Kami Kim ◽  
...  

ABSTRACTThe apicomplexan parasiteCryptosporidiumis a significant cause of diarrheal disease worldwide. Previously, we reported that aCryptosporidium parvumsubtilisin-like serine protease activity with furin-type specificity cleaves gp40/15, a glycoprotein that is proteolytically processed into gp40 and gp15, which are implicated in mediating infection of host cells. Neither the enzyme(s) responsible for the protease activity inC. parvumlysates nor those that process gp40/15 are known. There are no furin or other proprotein convertase genes in theC. parvumgenome. However, a gene encoding CpSUB1, a subtilisin-like serine protease, is present. In this study, we cloned the CpSUB1 genomic sequence and expressed and purified the recombinant prodomain. Reverse transcriptase PCR analysis of RNA fromC. parvum-infected HCT-8 cells revealed that CpSUB1 is expressed throughout infection in vitro. In immunoblots, antiserum to the recombinant CpSUB1 prodomain revealed two major bands, of ∼64 kDa and ∼48 kDa, forC. parvumlysates and proteins “shed” during excystation. In immunofluorescence assays, the antiserum reacted with the apical region of sporozoites and merozoites. The recombinant prodomain inhibited protease activity and processing of recombinant gp40/15 byC. parvumlysates but not by furin. Since prodomains are often selective inhibitors of their cognate enzymes, these results suggest that CpSUB1 may be a likely candidate for the protease activity inC. parvumand for processing of gp40/15. Importantly, the recombinant prodomain inhibitedC. parvuminfection of HCT-8 cells. These studies indicate that CpSUB1 plays a significant role in infection of host cells by the parasite and suggest that this enzyme may serve as a target for intervention.


2013 ◽  
Vol 69 (2) ◽  
pp. e41
Author(s):  
Satomi Igawa ◽  
Shin Iinuma ◽  
Mari Kishibe ◽  
Masako Minami-Hori ◽  
Masaru Honma ◽  
...  

2006 ◽  
Vol 74 (11) ◽  
pp. 6124-6134 ◽  
Author(s):  
Nathalie M. Maroncle ◽  
Kelsey E. Sivick ◽  
Rebecca Brady ◽  
Faye-Ellen Stokes ◽  
Harry L. T. Mobley

ABSTRACT The secreted autotransporter toxin (Sat), found predominantly in uropathogenic Escherichia coli, is a member of the SPATE (serine protease autotransporters of Enterobacteriaceae) family and, as such, has serine protease activity and causes cytopathic effects on various cell types. To assess the contribution of the serine protease active site to the mechanism of action of Sat, mutations were made in the first (S256I), in the second (S258A), or in both (S256I/S258A) serine residues within the active site motif. Mutations in the first or both serines reduced protease activity to background levels (P < 0.001); a single mutation in the second serine reduced activity by 60% compared to wild type (P < 0.001). After reversion of the S256I mutation to wild type (I256S), we confirmed S256 as the catalytically active serine. None of these mutations affected secretion of the mature passenger domain or release into the supernatant. The S256I mutation, however, abrogated the cytotoxicity of Sat on human bladder (UM-UC-3) and kidney (HEK 293) epithelial cells, characterized by rounding and elongation, respectively, and a high level of cell detachment. Moreover, S256 is essential for Sat to mediate cytoskeletal contraction and actin loss in host cells as well as to degrade specific membrane/cytoskeletal (fodrin and leukocyte function-associated molecule 1) and nuclear [microtubule-associated proteins, LIM domain-only protein 7, Rap GTPase-activating protein, poly(ADP-ribose) polymerase] proteins in vitro. Lastly, Sat was internalized by host cells and localized to the cytoskeletal fraction where membrane/cytoskeletal target proteins reside.


2009 ◽  
Vol 83 (7) ◽  
pp. 3268-3275 ◽  
Author(s):  
Rudolf K. F. Beran ◽  
Brett D. Lindenbach ◽  
Anna Marie Pyle

ABSTRACT Nonstructural protein 3 (NS3) is an essential replicative component of the hepatitis C virus (HCV) and a member of the DExH/D-box family of proteins. The C-terminal region of NS3 (NS3hel) exhibits RNA-stimulated NTPase and helicase activity, while the N-terminal serine protease domain of NS3 enhances RNA binding and unwinding by NS3hel. The nonstructural protein 4A (NS4A) binds to the NS3 protease domain and serves as an obligate cofactor for NS3 serine protease activity. Given its role in stimulating protease activity, we sought to determine whether NS4A also influences the activity of NS3hel. Here we show that NS4A enhances the ability of NS3hel to bind RNA in the presence of ATP, thereby acting as a cofactor for helicase activity. This effect is mediated by amino acids in the C-terminal acidic domain of NS4A. When these residues are mutated, one observes drastic reductions in ATP-coupled RNA binding and duplex unwinding by NS3. These same mutations are lethal in HCV replicons, thereby establishing in vitro and in vivo that NS4A plays an important role in the helicase mechanism of NS3 and its function in replication.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Pan Zhuang ◽  
Haoyu Li ◽  
Wei Jia ◽  
Qiyang Shou ◽  
Ya’er Zhu ◽  
...  

Abstract Background Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been suggested to prevent the development of metabolic disorders. However, their individual role in treating hyperglycemia and the mechanism of action regarding gut microbiome and metabolome in the context of diabetes remain unclear. Results Supplementation of DHA and EPA attenuated hyperglycemia and insulin resistance without changing body weight in db/db mice while the ameliorative effect appeared to be more pronounced for EPA. DHA/EPA supplementation reduced the abundance of the lipopolysaccharide-containing Enterobacteriaceae whereas elevated the family Coriobacteriaceae negatively correlated with glutamate level, genera Barnesiella and Clostridium XlVa associated with bile acids production, beneficial Bifidobacterium and Lactobacillus, and SCFA-producing species. The gut microbiome alterations co-occurred with the shifts in the metabolome, including glutamate, bile acids, propionic/butyric acid, and lipopolysaccharide, which subsequently relieved β cell apoptosis, suppressed hepatic gluconeogenesis, and promoted GLP-1 secretion, white adipose beiging, and insulin signaling. All these changes appeared to be more evident for EPA. Furthermore, transplantation with DHA/EPA-mediated gut microbiota mimicked the ameliorative effect of DHA/EPA on glucose homeostasis in db/db mice, together with similar changes in gut metabolites. In vitro, DHA/EPA treatment directly inhibited the growth of Escherichia coli (Family Enterobacteriaceae) while promoted Coriobacterium glomerans (Family Coriobacteriaceae), demonstrating a causal effect of DHA/EPA on featured gut microbiota. Conclusions DHA and EPA dramatically attenuated hyperglycemia and insulin resistance in db/db mice, which was mediated by alterations in gut microbiome and metabolites linking gut to adipose, liver and pancreas. These findings shed light into the gut-organs axis as a promising target for restoring glucose homeostasis and also suggest a better therapeutic effect of EPA for treating diabetes.


2018 ◽  
Vol 315 (6) ◽  
pp. L1042-L1057 ◽  
Author(s):  
Michael C. Yee ◽  
Heddie L. Nichols ◽  
Danny Polley ◽  
Mahmoud Saifeddine ◽  
Kasturi Pal ◽  
...  

Alternaria alternata is a fungal allergen associated with severe asthma and asthma exacerbations. Similarly to other asthma-associated allergens, Alternaria secretes a serine-like trypsin protease(s) that is thought to act through the G protein-coupled receptor protease-activated receptor-2 (PAR2) to induce asthma symptoms. However, specific mechanisms underlying Alternaria-induced PAR2 activation and signaling remain ill-defined. We sought to determine whether Alternaria-induced PAR2 signaling contributed to asthma symptoms via a PAR2/β-arrestin signaling axis, identify the protease activity responsible for PAR2 signaling, and determine whether protease activity was sufficient for Alternaria-induced asthma symptoms in animal models. We initially used in vitro models to demonstrate Alternaria-induced PAR2/β-arrestin-2 signaling. Alternaria filtrates were then used to sensitize and challenge wild-type, PAR2−/− and β-arrestin-2−/− mice in vivo. Intranasal administration of Alternaria filtrate resulted in a protease-dependent increase of airway inflammation and mucin production in wild-type but not PAR2−/− or β-arrestin-2−/− mice. Protease was isolated from Alternaria preparations, and select in vitro and in vivo experiments were repeated to evaluate sufficiency of the isolated Alternaria protease to induce asthma phenotype. Administration of a single isolated serine protease from Alternaria, Alternaria alkaline serine protease (AASP), was sufficient to fully activate PAR2 signaling and induce β-arrestin-2−/−-dependent eosinophil and lymphocyte recruitment in vivo. In conclusion, Alternaria filtrates induce airway inflammation and mucus hyperplasia largely via AASP using the PAR2/β-arrestin signaling axis. Thus, β-arrestin-biased PAR2 antagonists represent novel therapeutic targets for treating aeroallergen-induced asthma.


Sign in / Sign up

Export Citation Format

Share Document