scholarly journals Autophagy in Tumor Immunity and Viral-Based Immunotherapeutic Approaches in Cancer

Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2672
Author(s):  
Ali Zahedi-Amiri ◽  
Kyle Malone ◽  
Shawn T. Beug ◽  
Tommy Alain ◽  
Behzad Yeganeh

Autophagy is a fundamental catabolic process essential for the maintenance of cellular and tissue homeostasis, as well as directly contributing to the control of invading pathogens. Unsurprisingly, this process becomes critical in supporting cellular dysregulation that occurs in cancer, particularly the tumor microenvironments and their immune cell infiltration, ultimately playing a role in responses to cancer therapies. Therefore, understanding “cancer autophagy” could help turn this cellular waste-management service into a powerful ally for specific therapeutics. For instance, numerous regulatory mechanisms of the autophagic machinery can contribute to the anti-tumor properties of oncolytic viruses (OVs), which comprise a diverse class of replication-competent viruses with potential as cancer immunotherapeutics. In that context, autophagy can either: promote OV anti-tumor effects by enhancing infectivity and replication, mediating oncolysis, and inducing autophagic and immunogenic cell death; or reduce OV cytotoxicity by providing survival cues to tumor cells. These properties make the catabolic process of autophagy an attractive target for therapeutic combinations looking to enhance the efficacy of OVs. In this article, we review the complicated role of autophagy in cancer initiation and development, its effect on modulating OVs and immunity, and we discuss recent progress and opportunities/challenges in targeting autophagy to enhance oncolytic viral immunotherapy.

2020 ◽  
Vol 21 (7) ◽  
pp. 2286 ◽  
Author(s):  
Stefania Raimondo ◽  
Marzia Pucci ◽  
Riccardo Alessandro ◽  
Simona Fontana

The modulation of the immune system is one of the hallmarks of cancer. It is now widely described that cancer cells are able to evade the immune response and thus establish immune tolerance. The exploration of the mechanisms underlying this ability of cancer cells has always attracted the scientific community and is the basis for the development of new promising cancer therapies. Recent evidence has highlighted how extracellular vesicles (EVs) represent a mechanism by which cancer cells promote immune escape by inducing phenotypic changes on different immune cell populations. In this review, we will discuss the recent findings on the role of tumor-derived extracellular vesicles (TEVs) in regulating immune checkpoints, focusing on the PD-L1/PD-1 axis.


Author(s):  
Nallanchakravarthula Srivathsa ◽  
Narayanappa Amruta ◽  
Chitteti Ramamurthy

Background: The microbes and host association emerged as a modulator in the modern era of medicine.The cancer and its associated host microbes are collectively referred to as a Cancer Microbiome. Cancer and microbiome have complex characteristics in terms of metabolic plasticity, micro environment remodelling, cellular communications and unique signatures within the host. These hallmark signs have a vital role in homeostasis and pathogenesis of host physiology.However, in the cancer the role of microbiome still needs to be explored. It is pivotal to review such hall mark signatures of microbiome and its role in cancer initiation, progression and therapy. Objective: The objective of this review is to elucidate the role of microbiome in cancer metabolism and tumour microenvi-ronment. It also focuses on importance of therapeutic opportunities and challenges in terms of manipulation of cancer mi-crobiome. Methods: The literature search is based on the notion of microbiome has role in cancer initiation, progression and therapy. Conclusion: The tumour micro environment and cancer metabolism are playing a significant in host-microbiome interactions. Microbiome can modulate the typical cancer therapies like chemo and immuno therapies in standard of care. The microbiome transplantation has been demonstrated as an effective therapy against cancer. Furthermore, the modulation of microbiome also has potential clinical outcomes in modern medicine.


2019 ◽  
Vol 20 (10) ◽  
pp. 2547 ◽  
Author(s):  
Rekha Jakhar ◽  
Karen Crasta

Communication between cells is quintessential for biological function and cellular homeostasis. Membrane-bound extracellular vesicles known as exosomes play pivotal roles in mediating intercellular communication in tumor microenvironments. These vesicles and exosomes carry and transfer biomolecules such as proteins, lipids and nucleic acids. Here we focus on exosomes secreted from senescent cells. Cellular senescence can alter the microenvironment and influence neighbouring cells via the senescence-associated secretory phenotype (SASP), which consists of factors such as cytokines, chemokines, matrix proteases and growth factors. This review focuses on exosomes as emerging SASP components that can confer pro-tumorigenic effects in pre-malignant recipient cells. This is in addition to their role in carrying SASP factors. Transfer of such exosomal components may potentially lead to cell proliferation, inflammation and chromosomal instability, and consequently cancer initiation. Senescent cells are known to gather in various tissues with age; eliminating senescent cells or blocking the detrimental effects of the SASP has been shown to alleviate multiple age-related phenotypes. Hence, we speculate that a better understanding of the role of exosomes released from senescent cells in the context of cancer biology may have implications for elucidating mechanisms by which aging promotes cancer and other age-related diseases, and how therapeutic resistance is exacerbated with age.


2004 ◽  
Vol 32 (2) ◽  
pp. 343-347 ◽  
Author(s):  
T. Maehama ◽  
F. Okahara ◽  
Y. Kanaho

The tumour suppressor PTEN (phosphatase and tensin homologue deleted on chromosome 10) plays essential roles in regulating signalling pathways involved in cell growth and apoptosis, and is inactivated in a wide variety of tumours. The role of PTEN as a tumour suppressor has been firmly established; however, the mechanism(s) by which its function and activity are regulated remains elusive. Here, we summarize recent progress in research directed towards trying to understand the molecular basis of regulatory mechanisms for PTEN. We also describe our novel finding that a tumour suppressor candidate protein binds to extreme C-terminal region of PTEN and regulates PTEN protein turnover.


2011 ◽  
Vol 31 (10) ◽  
pp. 1137-1139
Author(s):  
Qing-min WANG ◽  
Hui WAN ◽  
Fen-zhou SHI ◽  
Jun SHEN ◽  
Qiu-hong LIU

2020 ◽  
Vol 26 (21) ◽  
pp. 2492-2496 ◽  
Author(s):  
Fiammetta Romano ◽  
Giovanna Muscogiuri ◽  
Elea Di Benedetto ◽  
Volha V. Zhukouskaya ◽  
Luigi Barrea ◽  
...  

Background: Vitamin D exerts multiple pleiotropic effects beyond its role in calcium-phosphate metabolism. Growing evidence suggests an association between hypovitaminosis D and sleep disorders, thus increasing the interest in the role of this vitamin in the regulatory mechanisms of the sleep-wake cycle. Objective: The study aimed to explore and summarize the current knowledge about the role of vitamin D in sleep regulation and the impact of vitamin D deficiency on sleep disorders. Methods: The main regulatory mechanisms of vitamin D on sleep are explained in this study. The literature was scanned to identify clinical trials and correlation studies showing an association between vitamin D deficiency and sleep disorders. Results: Vitamin D receptors and the enzymes that control their activation and degradation are expressed in several areas of the brain involved in sleep regulation. Vitamin D is also involved in the pathways of production of Melatonin, the hormone involved in the regulation of human circadian rhythms and sleep. Furthermore, vitamin D can affect sleep indirectly through non-specific pain disorders, correlated with alterations in sleep quality, such as restless legs syndrome and obstructive sleep apnea syndrome. Conclusions: : Vitamin D has both a direct and an indirect role in the regulation of sleep. Although vitamin D deficiency has been associated to sleep disorders, there is still scant evidence to concretely support the role of vitamin D supplementation in the prevention or treatment of sleep disturbances; indeed, more intervention studies are needed to better clarify these aspects.


Sign in / Sign up

Export Citation Format

Share Document