scholarly journals Two Novel Precursors of the HIV-1 Protease Inhibitor Darunavir Target the UPR/Proteasome System in Human Hepatocellular Carcinoma Cell Line HepG2

Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3052
Author(s):  
Roberta Rinaldi ◽  
Rocchina Miglionico ◽  
Ilaria Nigro ◽  
Rosarita D’Orsi ◽  
Lucia Chiummiento ◽  
...  

Background: Several pre-clinical and clinical reports suggest that HIV-1 protease inhibitors, in addition to the antiretroviral properties, possess pleiotropic pharmacological effects including anticancer action. Therefore, we investigated the pro-apoptotic activity in tumor cells of two molecules, RDD-19 and RDD-142, which are hydroxyethylamine derivatives’ precursors of darunavir and several HIV-1 protease inhibitors. Methods: Three hepatoma cell lines and one non-pathological cell line were treated with RDD-19 and RDD-142, and cell viability was assessed. The expression levels of several markers for ER stress, autophagy, cellular ubiquitination, and Akt activation were quantified in HepG2 cells treated with RDD-19 and RDD-142 to evaluate apoptotic and non-apoptotic cell death. Results: RDD-19 and RDD-142 showed a greater dose-dependent cytotoxicity towards the hepatic tumor cell line HepG2 compared to the non-pathological hepatic cell line IHH. Both molecules caused two types of cell death, a caspase-dependent apoptosis, which was ascertained by a series of biochemical and morphological assays, and a caspase-independent death that was characterized by the induction of ER stress and autophagy. The strong increase of ubiquitinated proteins inside the cells suggested that the target of these molecules could be the proteasome and in silico molecular docking analysis that was used to support the plausibility of this hypothesis. Furthermore, cells treated with the two compounds displayed decreased levels of p-AKT, which interferes with cell survival and proliferation. Conclusions: These findings demonstrate that two compounds, RDD-19 and RDD-142, have pleiotropic effects and that they may represent promising anticancer candidates.

2015 ◽  
Vol 43 (03) ◽  
pp. 559-579 ◽  
Author(s):  
Cheng-Wei Tzeng ◽  
Wen-Sheng Tzeng ◽  
Liang-Tzung Lin ◽  
Chiang-Wen Lee ◽  
Ming-Hong Yen ◽  
...  

For centuries, natural plant extracts have played an important role in traditional medicine for curing and preventing diseases. Studies have revealed that Artocarpus communis possess various bioactivities, such as anti-inflammation, anti-oxidant, and anticancer activities. A. communis offers economic value as a source of edible fruit, yields timber, and is widely used in folk medicines. However, little is known about its molecular mechanisms of anticancer activity. Here, we demonstrate the antiproliferative activity of A. communis methanol extract (AM) and its dichloromethane fraction (AD) in two human hepatocellular carcinoma (HCC) cell lines, HepG2 and PLC/PRF/5. Colony assay showed the long-term inhibitory effect of both extracts on cell growth. DNA laddering and immunoblotting analyses revealed that both extracts did not induce apoptosis in the hepatoma cell lines. AM and AD-treated cells demonstrated different cell cycle distribution compared to UV-treated cells, which presented apoptotic cell death with high sub-G1 ratio. Instead, acridine orange staining revealed that AM and AD triggered autophagosome accumulation. Immunoblotting showed a significant expression of autophagy-related proteins, which indicated the autophagic cell death (ACD) of hepatoma cell lines. This study therefore demonstrates that A. communis AM and its dichloromethane fraction can induce ACD in HCC cells and elucidates the potential of A. communis extracts for development as anti tumor therapeutic agents that utilize autophagy as mechanism in mediating cancer cell death.


1993 ◽  
Vol 104 (2) ◽  
pp. 307-315 ◽  
Author(s):  
A.C. Bayly ◽  
N.J. French ◽  
C. Dive ◽  
R.A. Roberts

A range of hepatoma cell lines (RH1, HTC, FaO, 7800C1 and MH1C1), has been studied with the aim of establishing an in vitro model to investigate the molecular mechanisms of hepatocarcinogenicity induced by the peroxisome proliferator class of non-genotoxic carcinogens. In view of speculation that peroxisome proliferators suppress hepatocyte apoptosis in vivo, we have placed particular emphasis on evaluating whether hepatoma cell lines retain the ability to undergo apoptotic cell death. Expression of the liver-specific differentiation marker albumin and the peroxisome proliferator-activated receptor (PPAR) was highest in the Reuber hepatoma cell line, FaO. This cell line also demonstrated the most marked response to the peroxisome proliferator nafenopin with a 2.2-fold induction of the microsomal enzyme cytochrome p450IVA1. This response was found to display intercellular heterogeneity by immunocytochemistry. Thus, the FaO cell line maintained characteristics of hepatocytes, both in vivo and in vitro, in terms of expression of constitutive and inducible markers. However, none of the cell lines tested mirrored the hyperplastic response of hepatocytes to nafenopin, since no increase in cell growth kinetics was observed on addition of nafenopin to the growth medium. The mode of cell death in confluent FaO cultures was characterised as apoptosis, by fluorescence microscopy and agarose gel electrophoresis of extracted DNA. Cells detaching from confluent FaO cultures exhibited chromatin condensation and DNA fragmentation patterns characteristic of cels undergoing apoptotic death.Interestingly, no apoptosis was seen in monolayer cells, suggesting that apoptosis in vitro is associated with cell shrinkage and detachment similar to that documented for the liver in vivo.(ABSTRACT TRUNCATED AT 250 WORDS)


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sachiko Iwai ◽  
Hanako O. Ikeda ◽  
Hisashi Mera ◽  
Kohei Nishitani ◽  
Motoo Saito ◽  
...  

AbstractCurrently there is no effective treatment available for osteoarthritis (OA). We have recently developed Kyoto University Substances (KUSs), ATPase inhibitors specific for valosin-containing protein (VCP), as a novel class of medicine for cellular protection. KUSs suppressed intracellular ATP depletion, endoplasmic reticulum (ER) stress, and cell death. In this study, we investigated the effects of KUS121 on chondrocyte cell death. In cultured chondrocytes differentiated from ATDC5 cells, KUS121 suppressed the decline in ATP levels and apoptotic cell death under stress conditions induced by TNFα. KUS121 ameliorated TNFα-induced reduction of gene expression in chondrocytes, such as Sox9 and Col2α. KUS121 also suppressed ER stress and cell death in chondrocytes under tunicamycin load. Furthermore, intraperitoneal administration of KUS121 in vivo suppressed chondrocyte loss and proteoglycan reduction in knee joints of a monosodium iodoacetate-induced OA rat model. Moreover, intra-articular administration of KUS121 more prominently reduced the apoptosis of the affected chondrocytes. These results demonstrate that KUS121 protects chondrocytes from stress-induced cell death in vitro and in vivo, and indicate that KUS121 is a promising novel therapeutic agent to prevent the progression of OA.


Oncogene ◽  
2002 ◽  
Vol 21 (30) ◽  
pp. 4613-4625 ◽  
Author(s):  
Karuppiah Muthumani ◽  
Donghui Zhang ◽  
Daniel S Hwang ◽  
Sagar Kudchodkar ◽  
Nathanael S Dayes ◽  
...  

2006 ◽  
Vol 52 (2) ◽  
pp. 110-117 ◽  
Author(s):  
Toufeng Jin ◽  
Hajime Nakatani ◽  
Takahiro Taguchi ◽  
Hiroshi Sonobe ◽  
Norihito Morimoto ◽  
...  

1996 ◽  
Vol 229 (1) ◽  
pp. 299-304 ◽  
Author(s):  
M.Tiziana Corasaniti ◽  
Michele Navarra ◽  
M.Valeria Catani ◽  
Gerry Melino ◽  
giuseppe Nisticò ◽  
...  

Proceedings ◽  
2019 ◽  
Vol 40 (1) ◽  
pp. 9
Author(s):  
Amani Abdulmunem ◽  
Pınar Obakan-Yerlikaya ◽  
Elif-Damla Arisan ◽  
Ajda Coker-Gurkan

Breast cancer is the most common cancer in women worldwide and the second most common cancer overall. Autocrine growth hormone (GH) expression induced cell proliferation, growth, invasion-metastasis in vitro and in vivo breast cancer models. Moreover, forced GH signaling acts as a drug resistance profile in breast cancer cell lines against chemotherapeutic drugs such as tamoxifen, mitomycin C, doxorubicin and curcumin. Triptolide, an active plant extract from Tripterygium wilfordii, has been shown to induce apoptotic cell death in various cancer cells such a prostate, colon, breast cancer. Metformin, a common therapeutic agent for type II Diabetes mellitus, has been shown to induce autophagy, endoplasmic reticulum (ER) stress and apoptotic cell death in cancer cells. Our aim is to demonstrate the potential effect of metformin on triptolide-mediated drug resistance in autocrine GH expressing MDA-MB-231 breast cancer cells through Endoplasmic reticulum (ER) stress. Autocrine GH-mediated triptolide (20 nM) resistance overcame by metformin (2 mM) co-teatment in MDA-MB231 breast cancer cells through accelerating cell viability loss, growth inhibition compared to alone triptolide treatment. Combined treatment increased apoptotic cell death via CHOP activation, IRE1α upregulation. Consequently, we suggest that triptolide can be more effective with metformin combination in MDA-MB-231 GH+ drug resistant breast cancer cells.


Sign in / Sign up

Export Citation Format

Share Document