scholarly journals Single-Cell Transcriptomics Links Loss of Human Pancreatic β-Cell Identity to ER Stress

Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3585
Author(s):  
Nathalie Groen ◽  
Floris Leenders ◽  
Ahmed Mahfouz ◽  
Amadeo Munoz-Garcia ◽  
Mauro J. Muraro ◽  
...  

The maintenance of pancreatic islet architecture is crucial for proper β-cell function. We previously reported that disruption of human islet integrity could result in altered β-cell identity. Here we combine β-cell lineage tracing and single-cell transcriptomics to investigate the mechanisms underlying this process in primary human islet cells. Using drug-induced ER stress and cytoskeleton modification models, we demonstrate that altering the islet structure triggers an unfolding protein response that causes the downregulation of β-cell maturity genes. Collectively, our findings illustrate the close relationship between endoplasmic reticulum homeostasis and β-cell phenotype, and strengthen the concept of altered β-cell identity as a mechanism underlying the loss of functional β-cell mass.

2021 ◽  
Author(s):  
Jinghe Li ◽  
Ryota Inoue ◽  
Yu Togashi ◽  
Tomoko Okuyama ◽  
Aoi Satoh ◽  
...  

The effects of imeglimin, a novel anti-diabetes agent, on β-cell function remain unclear. Here, we unveiled the impact of imeglimin on β-cell survival. Treatment with imeglimin augmented mitochondrial function, enhanced insulin secretion, promoted β-cell proliferation, and improved β-cell survival in mouse islets. Imeglimin upregulated the expression of endoplasmic reticulum (ER)-related molecules including <i>Chop (Ddit3),</i> <i>Gadd34</i> (<i>Ppp1r15a</i>), <i>Atf3</i>, and <i>Sdf2l1</i>, and decreased eIF2α phosphorylation, after treatment with thapsigargin, and restored global protein synthesis in β-cells under ER stress. Imeglimin failed to protect ER stress-induced β-cell apoptosis in CHOP-deficient islets or in the presence of GADD34 inhibitor. Treatment with imeglimin showed a significant decrease in the number of apoptotic β-cells and increased β-cell mass in Akita mice. Imeglimin also protected against β-cell apoptosis in both human islets and human pluripotent stem cell (<a>hPSC)-derived β-like cells</a>. <a>Taken together, imeglimin modulates ER homeostasis pathway, which results in the prevention of β-cell apoptosis both <i>in vitro</i> and <i>in vivo</i>.</a>


2021 ◽  
Author(s):  
Chien-Wen Chen ◽  
Bo-Jhih Guan ◽  
Mohammed R Alzahrani ◽  
Zhaofeng Gao ◽  
Long Gao ◽  
...  

Pancreatic β-cells undergo high levels of endoplasmic reticulum (ER) stress due to their role in insulin secretion. Hence, they require sustainable and efficient adaptive stress responses to cope with the stress. Whether duration and episodes of chronic ER stress directly compromises β-cell identity is largely unknown. We show that under reversible, chronic ER stress, β-cells undergo a distinct transcriptional and translational reprogramming. During reprogramming, expression of master regulators of β-cell function and identity and proinsulin processing is impaired. Upon recovery from stress, β-cells regain their identity, highlighting a high-degree of adaptive β-cell plasticity. Remarkably, when stress episodes exceed a certain threshold, β-cell identity is gradually lost. Single cell RNA-seq analysis of islets from type 1 diabetes (T1D) patients, identifies the severe deregulation of the chronic stress-adaptation program, and reveals novel biomarkers for progression of T1D. Our results suggest β-cell adaptive exhaustion (βEAR) is a significant component of the pathogenesis of T1D.


2021 ◽  
Author(s):  
Jinghe Li ◽  
Ryota Inoue ◽  
Yu Togashi ◽  
Tomoko Okuyama ◽  
Aoi Satoh ◽  
...  

The effects of imeglimin, a novel anti-diabetes agent, on β-cell function remain unclear. Here, we unveiled the impact of imeglimin on β-cell survival. Treatment with imeglimin augmented mitochondrial function, enhanced insulin secretion, promoted β-cell proliferation, and improved β-cell survival in mouse islets. Imeglimin upregulated the expression of endoplasmic reticulum (ER)-related molecules including <i>Chop (Ddit3),</i> <i>Gadd34</i> (<i>Ppp1r15a</i>), <i>Atf3</i>, and <i>Sdf2l1</i>, and decreased eIF2α phosphorylation, after treatment with thapsigargin, and restored global protein synthesis in β-cells under ER stress. Imeglimin failed to protect ER stress-induced β-cell apoptosis in CHOP-deficient islets or in the presence of GADD34 inhibitor. Treatment with imeglimin showed a significant decrease in the number of apoptotic β-cells and increased β-cell mass in Akita mice. Imeglimin also protected against β-cell apoptosis in both human islets and human pluripotent stem cell (<a>hPSC)-derived β-like cells</a>. <a>Taken together, imeglimin modulates ER homeostasis pathway, which results in the prevention of β-cell apoptosis both <i>in vitro</i> and <i>in vivo</i>.</a>


Endocrinology ◽  
2016 ◽  
Vol 157 (9) ◽  
pp. 3431-3438 ◽  
Author(s):  
Yurong Xin ◽  
Haruka Okamoto ◽  
Jinrang Kim ◽  
Min Ni ◽  
Christina Adler ◽  
...  

Aging improves pancreatic β-cell function in mice. This is a surprising finding because aging is typically associated with functional decline. We performed single-cell RNA sequencing of β-cells from 3- and 26-month-old mice to explore how changes in gene expression contribute to improved function with age. The old mice were healthy and had reduced blood glucose levels and increased β-cell mass, which correlated to their body weight. β-Cells from young and old mice had similar transcriptome profiles. In fact, only 193 genes (0.89% of all detected genes) were significantly regulated (≥2-fold; false discovery rate &lt; 0.01; normalized counts &gt; 5). Of these, 183 were down-regulated and mainly associated with pathways regulating gene expression, cell cycle, cell death, and survival as well as cellular movement, function, and maintenance. Collectively our data show that β-cells from very old mice have transcriptome profiles similar to those of young mice. These data support previous findings that aging is not associated with reduced β-cell mass or functional β-cell decline in mice.


2021 ◽  
Vol 22 (4) ◽  
pp. 1813
Author(s):  
Joan Mir-Coll ◽  
Tilo Moede ◽  
Meike Paschen ◽  
Aparna Neelakandhan ◽  
Ismael Valladolid-Acebes ◽  
...  

Loss of pancreatic β-cell function is a critical event in the pathophysiology of type 2 diabetes. However, studies of its underlying mechanisms as well as the discovery of novel targets and therapies have been hindered due to limitations in available experimental models. In this study we exploited the stable viability and function of standardized human islet microtissues to develop a disease-relevant, scalable, and reproducible model of β-cell dysfunction by exposing them to long-term glucotoxicity and glucolipotoxicity. Moreover, by establishing a method for highly-efficient and homogeneous viral transduction, we were able to monitor the loss of functional β-cell mass in vivo by transplanting reporter human islet microtissues into the anterior chamber of the eye of immune-deficient mice exposed to a diabetogenic diet for 12 weeks. This newly developed in vitro model as well as the described in vivo methodology represent a new set of tools that will facilitate the study of β-cell failure in type 2 diabetes and would accelerate the discovery of novel therapeutic agents.


2021 ◽  
Author(s):  
Zeenat A. Shyr ◽  
Zihan Yan ◽  
Alessandro Ustione ◽  
Erin M. Egan ◽  
Maria S. Remedi

AbstractProgressive loss of pancreatic β-cell functional mass and anti-diabetic drug responsivity are classic findings in diabetes, frequently attributed to compensatory insulin hypersecretion and β-cell exhaustion. However, loss of β-cell mass and identity still occurs in mouse models of human KATP-gain-of-function induced Neonatal Diabetes Mellitus (NDM), in the absence of insulin secretion. Here we studied the mechanisms underlying and temporal progression of glucotoxicity-induced loss of functional β-cell mass in NDM mice, and the effects of sodium-glucose transporter 2 inhibitors (SGLT2i) therapy. Upon tamoxifen induction of transgene expression, NDM mice developed severe diabetes followed by an unexpected loss of insulin content, decreased proinsulin processing and proinsulin accumulation at 2-weeks of diabetes. This was accompanied by a marked increase in β-cell oxidative and ER stress, without changes in islet cell identity. Strikingly, early treatment with the SGLT2 inhibitor dapagliflozin restored insulin content, decreased proinsulin:insulin ratio and reduced oxidative and ER stress. However, despite reduction of blood glucose, dapagliflozin therapy was ineffective in restoring β-cell function in NDM mice when tit was initiated at >40 days of diabetes, when loss of β-cell mass and identity had already occurred. These results have important clinical implications as they demonstrate that: i) hyperglycemia per se, and not insulin hypersecretion, drives β-cell failure in diabetes, ii) recovery of β-cell function by SGLT2 inhibitors is through reduction of oxidative and ER stress, iii) SGLT2 inhibitors revert/prevent β-cell failure when used in early stages of diabetes, but not when loss of β-cell mass/identity already occurred, iv) common execution pathways underlie loss and recovery of β-cell function in different forms of diabetes.


2021 ◽  
Author(s):  
Xin Tong ◽  
Roland Stein

Free fatty acids (FFAs) are often stored in lipid droplet (LD) depots for eventual metabolic and/or synthetic use in many cell types, such a muscle, liver, and fat. In pancreatic islets, overt LD accumulation was detected in humans but not mice. LD buildup in islets was principally observed after roughly 11 years of age, increasing throughout adulthood under physiologic conditions, and also enriched in type 2 diabetes. To obtain insight into the role of LDs in human islet β cell function, the levels of a key LD scaffold protein, perilipin2 (PLIN2), were manipulated by lentiviral-mediated knock-down (KD) or over-expression (OE) in EndoCβH2-Cre cells, a human cell line with adult islet β-like properties. Glucose stimulated insulin secretion was blunted in PLIN2KD cells and improved in PLIN2OE cells. An unbiased transcriptomic analysis revealed that limiting LD formation induced effectors of endoplasmic reticulum (ER) stress that compromised the expression of critical β cell function and identity genes. These changes were essentially reversed by PLIN2OE or using the ER stress inhibitor, tauroursodeoxycholic acid. These results strongly suggest that LDs are essential for adult human islet β cell activity by preserving FFA homeostasis.<br>


2019 ◽  
Author(s):  
Jinsook Son ◽  
Hongxu Ding ◽  
Domenico Accii ◽  
Andrea Califano

ABSTRACTType 2 Diabetes is associated with defective insulin secretion, reduced β-cell mass, and increased glucagon production. Cell lineage-tracing in rodents and human autopsy surveys support the notion of β-cell dedifferentiation as a unifying mechanism for these abnormalities. Yet, mechanistic determinants of human β-cell failure remain elusive. Using regulatory-network-based single-cell analysis of human islets, we identify aberrant, diabetes-enriched transitional states characterized by metabolic inflexibility, α/β-transition, and endocrine progenitor/stem cell features. A coordinated transcription factor hierarchy mediating cell state transition emerged and was validated using barcoded guide-based, single-cell gene transfer and calcium flux measures in primary human islet cells. Specifically, two master regulators and associated epigenetic drivers emerged, one (AFF3) controlling β- to α-like-cell reprogramming, the other (BACH2) transition to a dedifferentiated endocrine progenitor-like cell. The findings provide mechanistic insight into diabetic islet cell dysfunction and suggest actionable pathways for pharmacological intervention.


2021 ◽  
Author(s):  
Xin Tong ◽  
Roland W Stein

Free fatty acids (FFAs) are often stored in lipid droplet (LD) depots for eventual metabolic and/or synthetic use in many cell types, such a muscle, liver, and fat. In pancreatic islets, overt LD accumulation was detected in humans but not mice. LD buildup in islets was principally observed after roughly 11 years of age, increasing throughout adulthood under physiologic conditions, and also enriched in type 2 diabetes. To obtain insight into the role of LDs in human islet β cell function, the levels of a key LD structural protein, perilipin2 (PLIN2), were manipulated by lentiviral-mediated knock-down (KD) or over-expression (OE) in EndoCβH2-Cre cells, a human cell line with adult islet β-like properties. Glucose stimulated insulin secretion was blunted in PLIN2KD cells and improved in PLIN2OE cells. An unbiased transcriptomic analysis revealed that limiting LD formation induced effectors of endoplasmic reticulum (ER) stress that compromised the expression of critical β cell function and identity genes. These changes were aggravated by exogenous treatment with FFAs toxic to islet β cells, and essentially reversed by PLIN2OE or using the ER stress inhibitor, tauroursodeoxycholic acid. These results strongly suggest that LDs are essential for adult human islet β cell activity by preserving FFA homeostasis.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Dina Mostafa ◽  
Akiko Yanagiya ◽  
Eleni Georgiadou ◽  
Yibo Wu ◽  
Theodoros Stylianides ◽  
...  

AbstractPancreatic β-cells are responsible for production and secretion of insulin in response to increasing blood glucose levels. Defects in β-cell function lead to hyperglycemia and diabetes mellitus. Here, we show that CNOT3, a CCR4–NOT deadenylase complex subunit, is dysregulated in islets in diabetic db/db mice, and that it is essential for murine β cell maturation and identity. Mice with β cell-specific Cnot3 deletion (Cnot3βKO) exhibit impaired glucose tolerance, decreased β cell mass, and they gradually develop diabetes. Cnot3βKO islets display decreased expression of key regulators of β cell maturation and function. Moreover, they show an increase of progenitor cell markers, β cell-disallowed genes, and genes relevant to altered β cell function. Cnot3βKO islets exhibit altered deadenylation and increased mRNA stability, partly accounting for the increased expression of those genes. Together, these data reveal that CNOT3-mediated mRNA deadenylation and decay constitute previously unsuspected post-transcriptional mechanisms essential for β cell identity.


Sign in / Sign up

Export Citation Format

Share Document