scholarly journals In Silico Analysis of Bioactive Peptides in Invasive Sea Grass Halophila stipulacea

Cells ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 557 ◽  
Author(s):  
Cagin Kandemir-Cavas ◽  
Horacio Pérez-Sanchez ◽  
Nazli Mert-Ozupek ◽  
Levent Cavas

Halophila stipulacea is a well-known invasive marine sea grass in the Mediterranean Sea. Having been introduced into the Mediterranean Sea via the Suez Channel, it is considered a Lessepsian migrant. Although, unlike other invasive marine seaweeds, it has not demonstrated serious negative impacts on indigenous species, it does have remarkable invasive properties. The present in-silico study reveals the biotechnological features of H. stipulacea by showing bioactive peptides from its rubisc/o protein. These are features such as antioxidant and hypolipideamic activities, dipeptidyl peptidase-IV and angiotensin converting enzyme inhibitions. The reported data open up new applications for such bioactive peptides in the field of pharmacy, medicine and also the food industry.

2021 ◽  
Author(s):  
Paolo G. Albano ◽  
Anna Sabbatini ◽  
Jonathan Lattanzio ◽  
Jan Steger ◽  
Sönke Szidat ◽  
...  

<p>The Lessepsian invasion – the largest marine biological invasion – followed the opening of the Suez Canal in 1869 (81 years BP). Shortly afterwards, tropical species also distributed in the Red Sea appeared on Mediterranean shores: it was the dawn of what would become the invasion of several hundred tropical species. The time of the Suez Canal opening coincided with an acceleration in natural history exploration and description, but the eastern sectors of the Mediterranean Sea lagged behind and were thoroughly explored only in the second half of the 20<sup>th</sup> century. Many parts are still insufficiently studied today. Baseline information on pre-Lessepsian ecosystem states is thus scarce. This knowledge gap has rarely been considered by invasion scientists: every new finding of species belonging to tropical clades has been assumed to be a Lessepsian invader.</p><p>We here question this assumption by radiocarbon dating seven individual tests of miliolids – imperforated calcareous foraminifera – belonging to five alleged non-indigenous species. Tests were found in two sediment cores collected at 30 and 40 m depth off Ashqelon, on the Mediterranean Israeli shelf. We dated one <em>Cribromiliolinella milletti </em>(core at 40 m, 20 cm sediment depth), three <em>Nodophthalmidium antillarum </em>(core at 40 m, 35 cm sediment depth), one <em>Miliolinella </em>cf. <em>fichteliana </em>(core at 30 m, 110 cm sediment depth), one <em>Articulina alticostata </em>(core at 40 m, 35 cm sediment depth) and one <em>Spiroloculina antillarum </em>(core at 30 m, 110 cm sediment depth). All foraminiferal tests proved to be of Holocene age, with a median calibrated age spanning between 749 and 8285 years BP. Only one test of <em>N. antillarum</em> showed a 2-sigma error overlapping the time of the opening of the Suez Canal, but with a median age of 1123 years BP. Additionally, a thorough literature search resulted in a further record of <em>S. antillarum</em> in a core interval dated 1820–2064 years BP in Turkey.</p><p>Therefore, these foraminiferal species are not introduced, but native species. They are all circumtropical or Indo-Pacific and in the Mediterranean distributed mostly in the eastern sectors (only <em>S. antillarum</em> occurs also in the Adriatic Sea). Two hypotheses can explain our results: these species are Tethyan relicts that survived the Messinian salinity crisis (5.97–5.33 Ma) and the glacial periods of the Pleistocene in the Eastern Mediterranean, which may have never desiccated completely during the Messinian crisis and which may have worked as a warm-water refugium in the Pleistocene; or they entered the Mediterranean Sea from the Red Sea more recently but before the opening of the Suez Canal, for example during the Last Interglacial (MIS5e) high-stand (125,000 years BP) when the flooded Isthmus of Suez enabled exchanges between the Mediterranean and the Indo-Pacific fauna. The recognition that some alleged Lessepsian invaders are in fact native species influences our understanding of the invasion process, its rates and environmental correlates.</p>


2021 ◽  
Vol 21 (12) ◽  
pp. 615-625
Author(s):  
Ayse Kose

Seaweeds are one of the ancient food supplements on Earth. Especially Asian countries use seaweeds as the fundamental ingredient in their cuisine. Seaweeds are photosynthetic organisms living in aquatic ecosystems and in the coastal territories. Seaweeds out of farm areas are frequently observed as coastal wastes. However, seaweeds are outstanding sources for bioactive substances and investigation bioactive properties of seaweed RuBisCO has never been done. RuBisCO is the most abundant protein on Earth but a vast amount of RuBisCO goes through waste. In this study, bioactive peptide prediction of frequently consumed seaweed RuBisCO proteins were analyzed in silico to identify possible bioactive peptides as substitute or support for grain, meat, and dairy based bioactive peptides. A huge portion of peptides were di-, tri- peptides with IC50 values less than 300 µM according to the comparison of BIOPEP database. Including gastric digestion, more than half of the peptides showed DDP-IV and ACE inhibitory activity followed by antioxidant properties. Also, novel antiinflammatory and anti-cancer peptides were found through in silico analysis.


NeoBiota ◽  
2021 ◽  
Vol 70 ◽  
pp. 151-165
Author(s):  
Francesco Zangaro ◽  
Benedetta Saccomanno ◽  
Eftychia Tzafesta ◽  
Fabio Bozzeda ◽  
Valeria Specchia ◽  
...  

The biodiversity of the Mediterranean Sea is currently threatened by the introduction of Non-Indigenous Species (NIS). Therefore, monitoring the distribution of NIS is of utmost importance to preserve the ecosystems. A promising approach for the identification of species and the assessment of biodiversity is the use of DNA barcoding, as well as DNA and eDNA metabarcoding. Currently, the main limitation in the use of genomic data for species identification is the incompleteness of the DNA barcode databases. In this research, we assessed the availability of DNA barcodes in the main reference libraries for the most updated inventory of 665 confirmed NIS in the Mediterranean Sea, with a special focus on the cytochrome oxidase I (COI) barcode and primers. The results of this study show that there are no barcodes for 33.18% of the species in question, and that 45.30% of the 382 species with COI barcode, have no primers publicly available. This highlights the importance of directing scientific efforts to fill the barcode gap of specific taxonomic groups in order to help in the effective application of the eDNA technique for investigating the occurrence and the distribution of NIS in the Mediterranean Sea.


2015 ◽  
Author(s):  
Jasmine Ferrario ◽  
Agnese Marchini ◽  
Martina Marić ◽  
Dan Minchin ◽  
Anna Occhipinti-Ambrogi

The Pacific cheilostome bryozoan Celleporaria brunnea (Hincks, 1884), a non-indigenous species already known for the Mediterranean Sea, was recorded in 2013-2014 from nine Italian port localities (Genoa, Santa Margherita Ligure, La Spezia, Leghorn, Viareggio, Olbia, Porto Rotondo, Porto Torres and Castelsardo) in the North-western Mediterranean Sea; in 2014 it was also found for the first time in the Adriatic Sea, in the marina “Kornati”, Biograd na Moru (Croatia). In Italy, specimens of C. brunnea were found in 44 out of 105 samples (48% from harbour sites ad 52% from marinas). These data confirm and update the distribution of C. brunnea in the Mediterranean Sea, and provide evidence that recreational boating is a vector responsible for the successful spread of this species. Previous literature data have shown the existence of differences in orifice and interzooidal avicularia length and width among different localities of the invaded range of C. brunnea. Therefore, measurements of orifice and avicularia were assessed for respectively 30 zooids and 8 to 30 interzooidal avicularia for both Italian and Croatian localities, and compared with literature data, in order to verify the existence of differences in the populations of C. brunnea that could reflect the geographic pattern of its invasion range. Our data show high variability of orifice measures among and within localities: zooids with broader than long orifice coexisted with others displaying longer than broad orifice, or similar values for both length and width. The morphological variation of C. brunnea in these localities, and above all the large variability of samples within single localities or even within colonies poses questions on the reliability of such morphometric characters for inter and intraspecific evaluations.


2015 ◽  
Vol 24 (2) ◽  
pp. 43-45 ◽  
Author(s):  
Bella Galil ◽  
Ferdinando Boero ◽  
Simona Fraschetti ◽  
Stefano Piraino ◽  
Marnie Campbell ◽  
...  

Author(s):  
Carlo Nike Bianchi ◽  
Francesco Caroli ◽  
Paolo Guidetti ◽  
Carla Morri

Global warming is facilitating the poleward range expansion of plant and animal species. In the Mediterranean Sea, the concurrent temperature increase and abundance of (sub)tropical non-indigenous species (NIS) is leading to the so-called ‘tropicalization’ of the Mediterranean Sea, which is dramatically evident in the south-eastern sectors of the basin. At the same time, the colder north-western sectors of the basin have been said to undergo a process of ‘meridionalization’, that is the establishment of warm-water native species (WWN) previously restricted to the southern sectors. The Gulf of Genoa (Ligurian Sea) is the north-western reach for southern species of whatever origin in the Mediterranean. Recent (up to 2015) observations of NIS and WWN by diving have been collated to update previous similar inventories. In addition, the relative occurrences of both groups of southern species have been monitored by snorkelling between 2009 and 2015 in shallow rocky reefs at Genoa, and compared with the trend in air and sea surface temperatures. A total of 20 southern species (11 NIS and 9 WWN) was found. Two WWN (the zebra seabream Diplodus cervinus and the parrotfish Sparisoma cretense) and three NIS (the SW Atlantic sponge Paraleucilla magna, the Red Sea polychaete Branchiomma luctuosum, and the amphi-American and amphi-Atlantic crab Percnon gibbesi) are new records for the Ligurian Sea, whereas juveniles of the Indo-Pacific bluespotted cornetfish Fistularia commersonii have been found for the first time. While temperature has kept on increasing for the whole period, with 2014 and 2015 being the warmest years since at least 1950, the number of WWN increased linearly, that of NIS increased exponentially, contradicting the idea of meridionalization and supporting that of tropicalization even in the northern sectors of the Mediterranean basin.


2021 ◽  
Vol 168 ◽  
pp. 103304 ◽  
Author(s):  
Selene Di Genio ◽  
Martina Gaglioti ◽  
Claudia Meneghesso ◽  
Fabio Barbieri ◽  
Carlo Cerrano ◽  
...  

2015 ◽  
Vol 58 (1) ◽  
Author(s):  
Vasileios Gerakaris ◽  
Konstantinos Tsiamis

AbstractSexual reproduction has hardly ever been reported in the Lessepsian seagrass


Viruses ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 430 ◽  
Author(s):  
Yael Lampert ◽  
Ran Berzak ◽  
Nadav Davidovich ◽  
Arik Diamant ◽  
Nir Stern ◽  
...  

Viruses are among the most abundant and diverse biological components in the marine environment. In finfish, viruses are key drivers of host diversity and population dynamics, and therefore, their effect on the marine environment is far-reaching. Viral encephalopathy and retinopathy (VER) is a disease caused by the marine nervous necrosis virus (NNV), which is recognized as one of the main infectious threats for marine aquaculture worldwide. For over 140 years, the Suez Canal has acted as a conduit for the invasion of Red Sea marine species into the Mediterranean Sea. In 2016–2017, we evaluated the prevalence of NNV in two indigenous Mediterranean species, the round sardinella (Sardinella aurita) and the white steenbras (Lithognathus mormyrus) versus two Lessepsian species, the Randall’s threadfin bream (Nemipterus randalli) and the Lessepsian lizardfish (Saurida lessepsianus). A molecular method was used to detect NNV in all four fish species tested. In N. randalli, a relatively newly established invasive species in the Mediterranean Sea, the prevalence was significantly higher than in both indigenous species. In S. lessepsianus, prevalence varied considerably between years. While the factors that influence the effective establishment of invasive species are poorly understood, we suggest that the susceptibility of a given invasive fish species to locally acquired viral pathogens such as NVV may be important, in terms of both its successful establishment in its newly adopted environment and its role as a reservoir ‘host’ in the new area.


Sign in / Sign up

Export Citation Format

Share Document