scholarly journals A Diet Induced Maladaptive Increase in Hepatic Mitochondrial DNA Precedes OXPHOS Defects and May Contribute to Non-Alcoholic Fatty Liver Disease

Cells ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1222 ◽  
Author(s):  
Malik ◽  
Simões ◽  
Rosa ◽  
Khan ◽  
Karkucinska-Wieckowska ◽  
...  

Non-alcoholic fatty liver disease (NAFLD), an increasingly prevalent and underdiagnosed disease, is postulated to be caused by hepatic fat mediated pathological mechanisms. Mitochondrial dysfunction is proposed to be involved, but it is not known whether this is a pathological driver or a consequence of NAFLD. We postulate that changes to liver mitochondrial DNA (mtDNA) are an early event that precedes mitochondrial dysfunction and irreversible liver damage. To test this hypothesis, we evaluated the impact of diet on liver steatosis, hepatic mtDNA content, and levels of key mitochondrial proteins. Liver tissues from C57BL/6 mice fed with high fat (HF) diet (HFD) and Western diet (WD, high fat and high sugar) for 16 weeks were used. Steatosis/fibrosis were assessed using haematoxylin and eosin (H&E) Oil Red and Masson’s trichome staining and collagen content. Total DNA was isolated, and mtDNA content was determined by quantifying absolute mtDNA copy number/cell using quantitative PCR. Selected mitochondrial proteins were analysed from a proteomics screen. As expected, both HFD and WD resulted in steatosis. Mouse liver contained a high mtDNA content (3617 ± 233 copies per cell), which significantly increased in HFD diet, but this increase was not functional, as indicated by changes in mitochondrial proteins. In the WD fed mice, liver dysfunction was accelerated alongside downregulation of mitochondrial oxidative phosphorylation (OXPHOS) and mtDNA replication machinery as well as upregulation of mtDNA-induced inflammatory pathways. These results demonstrate that diet induced changes in liver mtDNA can occur in a relatively short time; whether these contribute directly or indirectly to subsequent mitochondrial dysfunction and the development of NAFLD remains to be determined. If this hypothesis can be substantiated, then strategies to prevent mtDNA damage in the liver may be needed to prevent development and progression of NAFLD.

2017 ◽  
Author(s):  
Kenzo Motohashi ◽  
Ahmad Moolla ◽  
Tom Marjot ◽  
Mark Ainsworth ◽  
Jeremy Tomlinson ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Takuya Kawamura ◽  
Hiroaki Tanaka ◽  
Ryota Tachibana ◽  
Kento Yoshikawa ◽  
Shintaro Maki ◽  
...  

AbstractWe aimed to investigate the effects of maternal tadalafil therapy on fetal programming of metabolic function in a mouse model of fetal growth restriction (FGR). Pregnant C57BL6 mice were divided into the control, L-NG-nitroarginine methyl ester (L-NAME), and tadalafil + L-NAME groups. Six weeks after birth, the male pups in each group were given a high-fat diet. A glucose tolerance test (GTT) was performed at 15 weeks and the pups were euthanized at 20 weeks. We then assessed the histological changes in the liver and adipose tissue, and the adipocytokine production. We found that the non-alcoholic fatty liver disease activity score was higher in the L-NAME group than in the control group (p < 0.05). Although the M1 macrophage numbers were significantly higher in the L-NAME/high-fat diet group (p < 0.001), maternal tadalafil administration prevented this change. Moreover, the epididymal adipocyte size was significantly larger in the L-NAME group than in the control group. This was also improved by maternal tadalafil administration (p < 0.05). Further, we found that resistin levels were significantly lower in the L-NAME group compared to the control group (p < 0.05). The combination of exposure to maternal L-NAME and a high-fat diet induced glucose impairment and non-alcoholic fatty liver disease. However, maternal tadalafil administration prevented these complications. Thus, deleterious fetal programming caused by FGR might be modified by in utero intervention with tadalafil.


Metabolites ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 54
Author(s):  
Benjamin Buchard ◽  
Camille Teilhet ◽  
Natali Abeywickrama Samarakoon ◽  
Sylvie Massoulier ◽  
Juliette Joubert-Zakeyh ◽  
...  

Non-Alcoholic Fatty Liver Disease (NAFLD) is considered as the forthcoming predominant cause for hepatocellular carcinoma (HCC). NAFLD-HCC may rise in non-cirrhotic livers in 40 to 50% of patients. The aim of this study was to identify different metabolic pathways of HCC according to fibrosis level (F0F1 vs. F3F4). A non-targeted metabolomics strategy was applied. We analyzed 52 pairs of human HCC and adjacent non-tumoral tissues which included 26 HCC developed in severe fibrosis or cirrhosis (F3F4) and 26 in no or mild fibrosis (F0F1). Tissue extracts were analyzed using 1H-Nuclear Magnetic Resonance spectroscopy. An optimization evolutionary method based on genetic algorithm was used to identify discriminant metabolites. We identified 34 metabolites differentiating the two groups of NAFLD-HCC according to fibrosis level, allowing us to propose two metabolomics phenotypes of NAFLD-HCC. We showed that HCC-F0F1 mainly overexpressed choline derivatives and glutamine, whereas HCC-F3F4 were characterized by a decreased content of monounsaturated fatty acids (FA), an increase of saturated FA and an accumulation of branched amino acids. Comparing HCC-F0F1 and HCC-F3F4, differential expression levels of glucose, choline derivatives and phosphoethanolamine, monounsaturated FA, triacylglycerides were identified as specific signatures. Our metabolomics analysis of HCC tissues revealed for the first time two phenotypes of HCC developed in NAFLD according to fibrosis level. This study highlighted the impact of the underlying liver disease on metabolic reprogramming of the tumor.


Gut ◽  
2020 ◽  
pp. gutjnl-2020-321767
Author(s):  
Marta B Afonso ◽  
Pedro M Rodrigues ◽  
Miguel Mateus-Pinheiro ◽  
André L Simão ◽  
Maria M Gaspar ◽  
...  

ObjectiveReceptor-interacting protein kinase 3 (RIPK3) is a key player in necroptosis execution and an emerging metabolic regulator, whose contribution to non-alcoholic fatty liver disease (NAFLD) is controversial. We aimed to clarify the impact of RIPK3 signalling in the pathogenesis of human and experimental NAFLD.DesignRIPK3 levels were evaluated in two large independent cohorts of patients with biopsy proven NAFLD diagnosis and correlated with clinical and biochemical parameters. Wild-type (WT) or Ripk3-deficient (Ripk3−/−) mice were fed a choline-deficient L-amino acid-defined diet (CDAA) or an isocaloric control diet for 32 and 66 weeks.ResultsRIPK3 increased in patients with non-alcoholic steatohepatitis (NASH) in both cohorts, correlating with hepatic inflammation and fibrosis. Accordingly, Ripk3 deficiency ameliorated CDAA-induced inflammation and fibrosis in mice at both 32 and 66 weeks. WT mice on the CDAA diet for 66 weeks developed preneoplastic nodules and displayed increased hepatocellular proliferation, which were reduced in Ripk3−/− mice. Furthermore, Ripk3 deficiency hampered tumourigenesis. Intriguingly, Ripk3−/− mice displayed increased body weight gain, while lipidomics showed that deletion of Ripk3 shifted hepatic lipid profiles. Peroxisome proliferator-activated receptor γ (PPARγ) was increased in Ripk3−/− mice and negatively correlated with hepatic RIPK3 in patients with NAFLD. Mechanistic studies established a functional link between RIPK3 and PPARγ in controlling fat deposition and fibrosis.ConclusionHepatic RIPK3 correlates with NAFLD severity in humans and mice, playing a key role in managing liver metabolism, damage, inflammation, fibrosis and carcinogenesis. Targeting RIPK3 and its intricate signalling arises as a novel promising approach to treat NASH and arrest disease progression.


2014 ◽  
Vol 10 (6) ◽  
pp. 2917-2923 ◽  
Author(s):  
XIANG WANG ◽  
QIAOHUA REN ◽  
TAO WU ◽  
YONG GUO ◽  
YONG LIANG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document