scholarly journals Mechanisms Regulating Muscle Regeneration: Insights into the Interrelated and Time-Dependent Phases of Tissue Healing

Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1297 ◽  
Author(s):  
Laura Forcina ◽  
Marianna Cosentino ◽  
Antonio Musarò

Despite a massive body of knowledge which has been produced related to the mechanisms guiding muscle regeneration, great interest still moves the scientific community toward the study of different aspects of skeletal muscle homeostasis, plasticity, and regeneration. Indeed, the lack of effective therapies for several physiopathologic conditions suggests that a comprehensive knowledge of the different aspects of cellular behavior and molecular pathways, regulating each regenerative stage, has to be still devised. Hence, it is important to perform even more focused studies, taking the advantage of robust markers, reliable techniques, and reproducible protocols. Here, we provide an overview about the general aspects of muscle regeneration and discuss the different approaches to study the interrelated and time-dependent phases of muscle healing.


Antioxidants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 345 ◽  
Author(s):  
Maria Borja-Gonzalez ◽  
Jose C. Casas-Martinez ◽  
Brian McDonagh ◽  
Katarzyna Goljanek-Whysall

Ageing is associated with disrupted redox signalling and increased circulating inflammatory cytokines. Skeletal muscle homeostasis depends on the balance between muscle hypertrophy, atrophy and regeneration, however during ageing this balance is disrupted. The molecular pathways underlying the age-related decline in muscle regenerative potential remain elusive. microRNAs are conserved robust gene expression regulators in all tissues including skeletal muscle. Here, we studied satellite cells from adult and old mice to demonstrate that inhibition of miR-21 in satellite cells from old mice improves myogenesis. We determined that increased levels of proinflammatory cytokines, TNFα and IL6, as well as H2O2, increased miR-21 expression in primary myoblasts, which in turn resulted in their decreased viability and myogenic potential. Inhibition of miR-21 function rescued the decreased size of myotubes following TNFα or IL6 treatment. Moreover, we demonstrated that miR-21 could inhibit myogenesis in vitro via regulating IL6R, PTEN and FOXO3 signalling. In summary, upregulation of miR-21 in satellite cells and muscle during ageing may occur in response to elevated levels of TNFα and IL6, within satellite cells or myofibrillar environment contributing to skeletal muscle ageing and potentially a disease-related decline in potential for muscle regeneration.



Open Biology ◽  
2021 ◽  
Vol 11 (12) ◽  
Author(s):  
Thomas Molina ◽  
Paul Fabre ◽  
Nicolas A. Dumont

Skeletal muscle possesses a remarkable regenerative capacity that relies on the activity of muscle stem cells, also known as satellite cells. The presence of non-myogenic cells also plays a key role in the coordination of skeletal muscle regeneration. Particularly, fibro-adipogenic progenitors (FAPs) emerged as master regulators of muscle stem cell function and skeletal muscle regeneration. This population of muscle resident mesenchymal stromal cells has been initially characterized based on its bi-potent ability to differentiate into fibroblasts or adipocytes. New technologies such as single-cell RNAseq revealed the cellular heterogeneity of FAPs and their complex regulatory network during muscle regeneration. In acute injury, FAPs rapidly enter the cell cycle and secrete trophic factors that support the myogenic activity of muscle stem cells. Conversely, deregulation of FAP cell activity is associated with the accumulation of fibrofatty tissue in pathological conditions such as muscular dystrophies and ageing. Considering their central role in skeletal muscle pathophysiology, the regulatory mechanisms of FAPs and their cellular and molecular crosstalk with muscle stem cells are highly investigated in the field. In this review, we summarize the current knowledge on FAP cell characteristics, heterogeneity and the cellular crosstalk during skeletal muscle homeostasis and regeneration. We further describe their role in muscular disorders, as well as different therapeutic strategies targeting these cells to restore muscle regeneration.



2001 ◽  
pp. 1755-1759 ◽  
Author(s):  
JOERG WEFER ◽  
KARL-DIETRICH SIEVERT ◽  
NORBERT SCHLOTE ◽  
ANTJE E. WEFER ◽  
LORA NUNES ◽  
...  


2019 ◽  
Vol 2019 ◽  
pp. 1-20 ◽  
Author(s):  
Junio Dort ◽  
Paul Fabre ◽  
Thomas Molina ◽  
Nicolas A. Dumont

Muscle regeneration is a closely regulated process that involves a variety of cell types such as satellite cells, myofibers, fibroadipogenic progenitors, endothelial cells, and inflammatory cells. Among these different cell types, macrophages emerged as a central actor coordinating the different cellular interactions and biological processes. Particularly, the transition of macrophages from their proinflammatory to their anti-inflammatory phenotype was shown to regulate inflammation, myogenesis, fibrosis, vascularization, and return to homeostasis. On the other hand, deregulation of macrophage accumulation or polarization in chronic degenerative muscle disorders was shown to impair muscle regeneration. Considering the key roles of macrophages in skeletal muscle, they represent an attractive target for new therapeutic approaches aiming at mitigating various muscle disorders. This review aims at summarizing the novel insights into macrophage heterogeneity, plasticity, and functions in skeletal muscle homeostasis, regeneration, and disease.



2001 ◽  
Vol 165 (5) ◽  
pp. 1755-1759 ◽  
Author(s):  
JOERG WEFER ◽  
KARL-DIETRICH SIEVERT ◽  
NORBERT SCHLOTE ◽  
ANTJE E. WEFER ◽  
LORA NUNES ◽  
...  


Cells ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1925 ◽  
Author(s):  
Letizia Zullo ◽  
Matteo Bozzo ◽  
Alon Daya ◽  
Alessio Di Clemente ◽  
Francesco Paolo Mancini ◽  
...  

Cells with contractile functions are present in almost all metazoans, and so are the related processes of muscle homeostasis and regeneration. Regeneration itself is a complex process unevenly spread across metazoans that ranges from full-body regeneration to partial reconstruction of damaged organs or body tissues, including muscles. The cellular and molecular mechanisms involved in regenerative processes can be homologous, co-opted, and/or evolved independently. By comparing the mechanisms of muscle homeostasis and regeneration throughout the diversity of animal body-plans and life cycles, it is possible to identify conserved and divergent cellular and molecular mechanisms underlying muscle plasticity. In this review we aim at providing an overview of muscle regeneration studies in metazoans, highlighting the major regenerative strategies and molecular pathways involved. By gathering these findings, we wish to advocate a comparative and evolutionary approach to prompt a wider use of “non-canonical” animal models for molecular and even pharmacological studies in the field of muscle regeneration.



2016 ◽  
Vol 52 ◽  
pp. 60-66
Author(s):  
Tammanna R. Sahrawat ◽  
Deepyan Chatterjee

Computational approaches for spatial modeling of dynamics of the intercellular distribution of molecules can parse, simplify, classify and organize the spatiotemporal richness of any biochemical pathway and demonstrate its impact on the cells function by simply coupling it with the downstream effecters. One such online system biology modeling package is Virtual cell that provides a unique open source software and it’s used for making mathematical models to simulate the cytoplasmic control of molecule that interact to produce certain cellular behavior. In our present study, a spatial model for time dependent acetylcholine induced relaxation of vascular endothelial cells lining the lumen of blood vessel that regulate the contractility of the arteries was generated. The time-dependent action of neurotransmitter acetylcholine for total time period for 1 second was studied on the endothelial cell at an interval of every 0.05 seconds. Such time simulated spatial models may be useful for testing and developing new hypotheses, interpretation of results and understand the dynamic behavior of cells.



Sign in / Sign up

Export Citation Format

Share Document