scholarly journals AQP2: Mutations Associated with Congenital Nephrogenic Diabetes Insipidus and Regulation by Post-Translational Modifications and Protein-Protein Interactions

Cells ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 2172
Author(s):  
Chao Gao ◽  
Paul J. Higgins ◽  
Wenzheng Zhang

As a rare hereditary disease, congenital nephrogenic diabetes insipidus (NDI) is clinically characterized by polyuria with hyposthenuria and polydipsia. NDI results from collecting duct principal cell hyporesponsiveness or insensitivity to the antidiuretic action of arginine vasopressin (AVP). The principal cell-specific water channel aquaporin-2 (AQP2) plays an essential role in water reabsorption along osmotic gradients. The capacity to accumulate AQP2 in the apical plasma membrane in response to decreased fluid volume or increased plasma osmolality is critically regulated by the antidiuretic hormone AVP and its receptor 2 (AVPR2). Mutations in AVPR2 result in X-linked recessive NDI, the most common form of inherited NDI. Genetic defects in AQP2 cause autosomal recessive or dominant NDI. In this review, we provide an updated overview of the genetic and molecular mechanisms of congenital NDI, with a focus on the potential disease-causing mutations in AVPR2 and AQP2, the molecular defects in the AVPR2 and AQP2 mutants, post-translational modifications (i.e., phosphorylation, ubiquitination, and glycosylation) and various protein-protein interactions that regulate phosphorylation, ubiquitination, tetramerization, trafficking, stability, and degradation of AQP2.

1999 ◽  
Vol 10 (3) ◽  
pp. 647-663
Author(s):  
SØREN NIELSEN ◽  
TAE-HWAN KWON ◽  
BIRGITTE MØNSTER CHRISTENSEN ◽  
DOMINIQUE PROMENEUR ◽  
JØRGEN FRØKIÆR ◽  
...  

Abstract. The discovery of aquaporin membrane water channels by Agre and coworkers answered a long-standing biophysical question of how water specifically crosses biologic membranes, and provided insight, at the molecular level, into the fundamental physiology of water balance and the pathophysiology of water balance disorders. Of nine aquaporin isoforms, at least six are known to be present in the kidney at distinct sites along the nephron and collecting duct. Aquaporin-1 (AQP1) is extremely abundant in the proximal tubule and descending thin limb, where it appears to provide the chief route for proximal nephron water reabsorption. AQP2 is abundant in the collecting duct principal cells and is the chief target for vasopressin to regulate collecting duct water reabsorption. Acute regulation involves vasopressin-regulated trafficking of AQP2 between an intracellular reservoir and the apical plasma membrane. In addition, AQP2 is involved in chronic/adaptational regulation of body water balance achieved through regulation of AQP2 expression. Importantly, multiple studies have now identified a critical role of AQP2 in several inherited and acquired water balance disorders. This concerns inherited forms of nephrogenic diabetes insipidus and several, much more common acquired types of nephrogenic diabetes insipidus where AQP2 expression and/or targeting are affected. Conversely, AQP2 expression and targeting appear to be increased in some conditions with water retention such as pregnancy and congestive heart failure. AQP3 and AQP4 are basolateral water channels located in the kidney collecting duct, and AQP6 and AQP7 appear to be expressed at lower abundance at several sites including the proximal tubule. This review focuses mainly on the role of AQP2 in water balance regulation and in the pathophysiology of water balance disorders.


2015 ◽  
Vol 42 (1) ◽  
pp. 65-69 ◽  
Author(s):  
Farahnak Assadi ◽  
Fatemeh Ghane Sharbaf

Background: Congenital nephrogenic diabetes insipidus (NDI) is characterized by massive polyuria and polydipsia due to defects in the vasopressin-sensitive signaling system expression of the acuaporin-2 (AQP2) water channel of the kidney collecting duct principal cells. Current conventional treatment regimen including hydration, diuretics and non-steroidal anti-inflammatory drugs can only partially reduce polyuria. Recent experimental studies have suggested that treatment with sildenafil, a selective phosphodiesterase inhibitor, may enhance cyclic guanosine monophosphate (cGMP)-mediated apical trafficking of AQP2 and may be effective in increasing water reabsorption in patients with congenital NDI. Patient and Methods: A 4-year old boy with X-linked NDI resistant to conventional therapy was treated with sildenafil for 10 days after a 2-day washout period between the 2 treatment regimens. Aliquots of the 24-hour urine collections before and after treatment were analyzed for urine volume, osmolality, cGMP and AQP2 determinations. Blood samples were also obtained for sodium and osmolality measurements. The primary endpoint was 24-hour urine volume after 10 days of sildenafil and conventional treatments. Results: Compared to conventional therapy, treatment with sildenafil resulted in substantial reduction in 24-hour urine volume (1,764 vs. 950 ml) and serum sodium (148 vs. 139) mEq/l, and increased urine osmolality (104 vs. 215 mOsm/l), and AQP2 excretion (5 vs. 26 fmol/mg creatinine). The patient tolerated sildenafil well and experienced no adverse effects. Conclusions: Sildenafil citrate should be considered an alternative agent in the treatment of X-linked NDI resistant to conventional therapy.


2020 ◽  
Vol 27 (37) ◽  
pp. 6306-6355 ◽  
Author(s):  
Marian Vincenzi ◽  
Flavia Anna Mercurio ◽  
Marilisa Leone

Background:: Many pathways regarding healthy cells and/or linked to diseases onset and progression depend on large assemblies including multi-protein complexes. Protein-protein interactions may occur through a vast array of modules known as protein interaction domains (PIDs). Objective:: This review concerns with PIDs recognizing post-translationally modified peptide sequences and intends to provide the scientific community with state of art knowledge on their 3D structures, binding topologies and potential applications in the drug discovery field. Method:: Several databases, such as the Pfam (Protein family), the SMART (Simple Modular Architecture Research Tool) and the PDB (Protein Data Bank), were searched to look for different domain families and gain structural information on protein complexes in which particular PIDs are involved. Recent literature on PIDs and related drug discovery campaigns was retrieved through Pubmed and analyzed. Results and Conclusion:: PIDs are rather versatile as concerning their binding preferences. Many of them recognize specifically only determined amino acid stretches with post-translational modifications, a few others are able to interact with several post-translationally modified sequences or with unmodified ones. Many PIDs can be linked to different diseases including cancer. The tremendous amount of available structural data led to the structure-based design of several molecules targeting protein-protein interactions mediated by PIDs, including peptides, peptidomimetics and small compounds. More studies are needed to fully role out, among different families, PIDs that can be considered reliable therapeutic targets, however, attacking PIDs rather than catalytic domains of a particular protein may represent a route to obtain selective inhibitors.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Wei Zhang ◽  
Yimin Shen ◽  
Yuezhong Ren ◽  
Yvbo Xin ◽  
Lijun Wang

Abstract Background Diabetes insipidus (DI) can be a common cause of polydipsia and polyuria. Here, we present a case of congenital nephrogenic diabetes insipidus (CNDI) accompanied with central diabetes insipidus (CDI) secondary to pituitary surgery. Case presentation A 24-year-old Chinese woman came to our hospital with the complaints of polydipsia and polyuria for 6 months. Six months ago, she was detected with pituitary apoplexy, and thereby getting pituitary surgery. However, the water deprivation test demonstrated no significant changes in urine volume and urine gravity in response to fluid depression or AVP administration. In addition, the genetic results confirmed a heterozygous mutation in arginine vasopressin receptor type 2 (AVPR2) genes. Conclusions She was considered with CNDI as well as acquired CDI secondary to pituitary surgery. She was given with hydrochlorothiazide (HCTZ) 25 mg twice a day as well as desmopressin (DDAVP, Minirin) 0.1 mg three times a day. There is no recurrence of polyuria or polydipsia observed for more than 6 months. It can be hard to consider AVPR2 mutation in female carriers, especially in those with subtle clinical presentation. Hence, direct detection of DNA sequencing with AVPR2 is a convenient and accurate method in CNDI diagnosis.


2018 ◽  
Vol 25 (1) ◽  
pp. 5-21 ◽  
Author(s):  
Ylenia Cau ◽  
Daniela Valensin ◽  
Mattia Mori ◽  
Sara Draghi ◽  
Maurizio Botta

14-3-3 is a class of proteins able to interact with a multitude of targets by establishing protein-protein interactions (PPIs). They are usually found in all eukaryotes with a conserved secondary structure and high sequence homology among species. 14-3-3 proteins are involved in many physiological and pathological cellular processes either by triggering or interfering with the activity of specific protein partners. In the last years, the scientific community has collected many evidences on the role played by seven human 14-3-3 isoforms in cancer or neurodegenerative diseases. Indeed, these proteins regulate the molecular mechanisms associated to these diseases by interacting with (i) oncogenic and (ii) pro-apoptotic proteins and (iii) with proteins involved in Parkinson and Alzheimer diseases. The discovery of small molecule modulators of 14-3-3 PPIs could facilitate complete understanding of the physiological role of these proteins, and might offer valuable therapeutic approaches for these critical pathological states.


2005 ◽  
Vol 20 (6) ◽  
pp. 1076 ◽  
Author(s):  
Hae Il Cheong ◽  
Su Jin Cho ◽  
Shou Huan Zheng ◽  
Hee Yeon Cho ◽  
Il Soo Ha ◽  
...  

2008 ◽  
Vol 412 (1) ◽  
pp. 163-170 ◽  
Author(s):  
Alon Herschhorn ◽  
Iris Oz-Gleenberg ◽  
Amnon Hizi

The RT (reverse transcriptase) of HIV-1 interacts with HIV-1 IN (integrase) and inhibits its enzymatic activities. However, the molecular mechanisms underling these interactions are not well understood. In order to study these mechanisms, we have analysed the interactions of HIV-1 IN with HIV-1 RT and with two other related RTs: those of HIV-2 and MLV (murine-leukaemia virus). All three RTs inhibited HIV-1 IN, albeit to a different extent, suggesting a common site of binding that could be slightly modified for each one of the studied RTs. Using surface plasmon resonance technology, which monitors direct protein–protein interactions, we performed kinetic analyses of the binding of HIV-1 IN to these three RTs and observed interesting binding patterns. The interaction of HIV-1 RT with HIV-1 IN was unique and followed a two-state reaction model. According to this model, the initial IN–RT complex formation was followed by a conformational change in the complex that led to an elevation of the total affinity between these two proteins. In contrast, HIV-2 and MLV RTs interacted with IN in a simple bi-molecular manner, without any apparent secondary conformational changes. Interestingly, HIV-1 and HIV-2 RTs were the most efficient inhibitors of HIV-1 IN activity, whereas HIV-1 and MLV RTs showed the highest affinity towards HIV-1 IN. These modes of direct protein interactions, along with the apparent rate constants calculated and the correlations of the interaction kinetics with the capacity of the RTs to inhibit IN activities, are all discussed.


Sign in / Sign up

Export Citation Format

Share Document