scholarly journals Prediction of Trained Panel Sensory Scores for Beef with Non-Invasive Raman Spectroscopy

Chemosensors ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 6
Author(s):  
Jamie Cafferky ◽  
Raquel Cama-Moncunill ◽  
Torres Sweeney ◽  
Paul Allen ◽  
Andrew Cromie ◽  
...  

The objective of this study was to investigate Raman spectroscopy as a tool for the prediction of sensory quality in beef. Raman spectra were collected from M. longissimus thoracis et lumborum (LTL) muscle on a thawed steak frozen 48 h post-mortem. Another steak was removed from the muscle and aged for 14 days before being assessed for 12 sensory traits by a trained panel. The most accurate coefficients of determination of cross validation (R2CV) calibrated within the current study were for the trained sensory panel textural scores; particularly tenderness (0.46), chewiness (0.43), stringiness (0.35) and difficulty to swallow (0.33), with practical predictions also achieved for metallic flavour (0.52), fatty after-effect (0.44) and juiciness (0.36). In general, the application of mathematical spectral pre-treatments to Raman spectra improved the predictive accuracy of chemometric models developed. This study provides calibrations for valuable quality traits derived from a trained sensory panel in a non-destructive manner, using Raman spectra collected at a time-point compatible with meat management systems.

Photonics ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 587
Author(s):  
Maksim N. Moskovskiy ◽  
Aleksey V. Sibirev ◽  
Anatoly A. Gulyaev ◽  
Stanislav A. Gerasimenko ◽  
Sergey I. Borzenko ◽  
...  

Identification of specific mycotoxins p. Fusarium contained in infected winter wheat seeds can be achieved by visually recognizing their distinctive phenotypic species. The visual identification (ID) of species is subjective and usually requires significant taxonomic knowledge. Methods for the determination of various types of mycotoxins of the p. Fusarium are laborious and require the use of chemical invasive research methods. In this research, we investigate the possibility of using Raman spectroscopy (RS) as a tag-free, non-invasive and non-destructive analytical method for the rapid and accurate identification of p. Fusarium. Varieties of the r. Fusarium can produce mycotoxins that directly affect the DNA, RNA and chemical structure of infected seeds. Analysis of spectra by RS methods and chemometric analysis allows the identification of healthy, infected and contaminated seeds of winter wheat with varieties of mycotoxins p. Fusarium. Raman seed analysis provides accurate identification of p. Fusarium in 96% of samples. In addition, we present data on the identification of carbohydrates, proteins, fiber and other nutrients contaminated with p. Fusarium seeds obtained using spectroscopic signatures. These results demonstrate that RS enables rapid, accurate and non-invasive screening of seed phytosanitary status.


Meat Science ◽  
2012 ◽  
Vol 91 (3) ◽  
pp. 232-239 ◽  
Author(s):  
Qi Wang ◽  
Steven M. Lonergan ◽  
Chenxu Yu

2004 ◽  
Vol 3 (2) ◽  
pp. 165-174 ◽  
Author(s):  
S.E. Jorge Villar ◽  
H.G.M. Edwards

The special characteristics of Raman spectroscopy (relative insensitivity to water, non-destructive detection, sensitivity to bio- and geosignatures, molecular structural composition information, etc.) together with the development of miniaturized Raman spectrometers make the consideration of this technique for future robotic landers on planetary surfaces, particularly Mars, a very interesting option. The development of light and rugged Raman spectrometers limits the possible scope of the instrumentation which has particular importance in the recognition of biomolecular and mineral signatures. In this work, we evaluate the spectral resolution and scan time parameters and the effect that they have on the Raman spectra of extremophilic biomolecules, together with the wavenumber ranges which are critical for the detection of life signals. This is of vital relevance for the design of miniaturized Raman spectrometer systems. From our results, we conclude that for extraterrestrial biological signatures unambiguous Raman spectral identification provided with a minimum of 16 cm−1 spectral resolution is required for the most significant biosignature wavenumber range in the 1700–700 cm−1 region.


2015 ◽  
Vol 16 (4) ◽  
pp. 914-921 ◽  
Author(s):  
Yu Zhao ◽  
Nan Ji ◽  
Lihui Yin ◽  
Jun Wang

2007 ◽  
Vol 15 (6) ◽  
pp. 6-11 ◽  
Author(s):  
S.V. Prikhodko ◽  
C. Fischer ◽  
R. Boytner ◽  
M. C. Lozada ◽  
M. Uribe ◽  
...  

Variable pressure scanning electron microscopy (VPSEM) coupled with other non-destructive analytical methods, such as energy dispersive (EDS) and Raman spectroscopy (RS) offers new capabilities for non-invasive imaging and chemical characterization of archaeological materials. This article underlines the application of VPSEM-EDS-RS on bioarchaeological specimens of pre-Columbian mummies from the Tarapacá Valley in northern Chile. The aim of the scientific investigations is to identify nonanatomical features and to provide qualitative and quantitative information at molecular levels, complementing the morphological record from studies in physical anthropology, in an effort to understand mortuary practices in the Tarapacá Valley and the effects of the burial environment in the preservation of mummified human remains.


2017 ◽  
Vol 3 (1) ◽  
Author(s):  
Germana Barone ◽  
Paolo Mazzoleni ◽  
Danilo Bersani ◽  
Simona Raneri

AbstractOrigin of gemstones is a key aspect not only in gemological field but also in Cultural Heritage studies, for the correct evaluation of precious artifacts. The studies on gems require the application of non-invasive and non-destructive methods; among them, portable spectroscopic techniques has been demonstrated as powerful tools, providing a fingerprint of gems for origin and provenance determination. In this study, portable XRF spectroscopy has been applied to test the potential of the technique for the origin determination of corundum gems. The obtained results allowed distinguishing natural and synthetic rubies and sapphires.


2018 ◽  
Vol 15 (30) ◽  
pp. 344
Author(s):  
Dalva Lucia Araujo Faria

As últimas décadas tem presenciado um crescente aumento no uso de métodos físico-químicos de análise de bens culturais. Algumas dessas técnicas tem se mostrado particularmente úteis pelo caráter não invasivo e não destrutivo que apresentam e, dentre elas, a espectroscopia Raman apresenta posição de destaque. Neste artigo, essas características da técnica são detalhadas, bem como são apresentados os fundamentos teóricos do espalhamento inelástico de luz e discutidos alguns aspectos práticos de sua utilização. Finalmente, é apresentado um levantamento detalhado dos grupos de pesquisa da América do Sul, voltados ao estudo de bens culturais, que tem se utilizado dessa ferramenta analítica e em qual tipo de questionamentos vem sendo aplicada. Abstract: The last decades have witnessed an ever growing increase in the usage of physico-chemical methods to investigate cultural heritage problems. Some of these techniques are proving to be particularly useful in such a context, due to their non-invasive and non-destructive nature; among them, Raman spectroscopy occupies a prominent position. In this paper, such characteristics of the technique are detailed and the physical basis of inelastic light scattering are presented, together with some practical aspects of its applications. Finally, it is here offered a detailed survey in the literature on the South American research groups devoted to the investigation of cultural heritage issues who are using Raman spectroscopy, and the type of interrogation carried on. 


Molecules ◽  
2019 ◽  
Vol 24 (8) ◽  
pp. 1500 ◽  
Author(s):  
Nan Li ◽  
Hang Zang ◽  
Huimin Sun ◽  
Xianzhi Jiao ◽  
Kangkang Wang ◽  
...  

Raman spectra of human skin obtained by laser excitation have been used to non-invasively detect blood glucose. In previous reports, however, Raman spectra thus obtained were mainly derived from the epidermis and interstitial fluid as a result of the shallow penetration depth of lasers in skin. The physiological process by which glucose in microvessels penetrates into the interstitial fluid introduces a time delay, which inevitably introduces errors in transcutaneous measurements of blood glucose. We focused the laser directly on the microvessels in the superficial layer of the human nailfold, and acquired Raman spectra with multiple characteristic peaks of blood, which indicated that the spectra obtained predominantly originated from blood. Incorporating a multivariate approach combining principal component analysis (PCA) and back propagation artificial neural network (BP-ANN), we performed noninvasive blood glucose measurements on 12 randomly selected volunteers, respectively. The mean prediction performance of the 12 volunteers was obtained as an RMSEP of 0.45 mmol/L and R2 of 0.95. It was no time lag between the predicted blood glucose and the actual blood glucose in the oral glucose tolerance test (OGTT). We also applied the procedure to data from all 12 volunteers regarded as one set, and the total predicted performance was obtained with an RMSEP of 0.27 mmol/L and an R2 of 0.98, which is better than that of the individual model for each volunteer. This suggested that anatomical differences between volunteer fingernails do not reduce the prediction accuracy and 100% of the predicted glucose concentrations fall within Region A and B of the Clarke error grid, allowing acceptable predictions in a clinically relevant range. The Raman spectroscopy detection of blood glucose from microvessels is of great significance of non-invasive blood glucose detection of Raman spectroscopy. This innovative method may also facilitate non-invasive detection of other blood components.


Sign in / Sign up

Export Citation Format

Share Document