scholarly journals Simultaneous Voltammetric Detection of Acetaminophen and Caffeine Base on Cassava Starch—Fe3O4 Nanoparticles Modified Glassy Carbon Electrode

Chemosensors ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 49 ◽  
Author(s):  
Ani Mulyasuryani ◽  
Rachmat Tjahjanto ◽  
Robi’atul Andawiyah

The new molecularly imprinted polymer (MIP) membrane based on cassava starch—Fe3O4—was developed to detect acetaminophen and caffeine simultaneously with the differential pulse voltammetry (DPV) method. Cassava starch was reacted with sodium tripolyphosphate (STPP) as a crosslinking agent, while acetaminophen and caffeine were added as templates. The Fe3O4 nanoparticles in the composite were added to increase the sensor’s sensitivity. The experimental results show that the ratio between cassava starch:STPP:acetaminophen/caffeine in the mixture for MIP membranes influences the sensitivity of the sensor obtained. MIP membranes with the best sensitivity is produced at a mixture ratio of 2:2:1. The sensor performance is also affected by the pH of the solution and the type of buffer solution used. The sensor works very well at pH 2 in PB solution. Sensors produced from GCE modified with MIP membrane from cassava starch—Fe3O4 with acetaminophen and caffeine as templates have linear range concentrations, respectively, at 50–2000 µM and 50–900 µM. Sensor sensitivity was 0.5306 A/M against acetaminophen and 0.4314 A/M against caffeine with Limit of Detection (LoD), respectively, 16 and 23 µM. Sensor selectivity and sensitivity are better than those without MIP and can be applied for the determination of the content of acetaminophen in headache medicine, with an accuracy of 96–99% and with Relative Standard Deviation (RSD) 0.9–2.56%.

2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Umesh Chandra ◽  
B. E. Kumara Swamy ◽  
Ongera Gilbert ◽  
B. S. Sherigara

Poly (xylenol orange) film-coated graphite pencil electrode was fabricated for the detection of dopamine in the presence of ascorbic acid and uric acid in phosphate buffer solution of pH 7. The redox peaks obtained at modified electrode shows a good enhancement. The scan rate effect was found to be a diffusion-controlled electrode process. The electrochemical oxidation of dopamine was depended on pH, and the limit of detection was found to be 9.1×10−8 M. The simultaneous study gave and excellent result with great potential difference between dopamine and other bioactive organic molecules by using both cyclic voltammetric and differential pulse voltammetric techniques. The present modified graphite electrode was applied to the detection of dopamine in the injection samples, and the recovery obtained was satisfactory.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Pattan-Siddappa Ganesh ◽  
Ganesh Shimoga ◽  
Seok-Han Lee ◽  
Sang-Youn Kim ◽  
Eno E. Ebenso

Abstract Background A simple and simultaneous electrochemical sensing platform was fabricated by electropolymerization of allura red on glassy carbon electrode (GCE) for the interference-free detection of dihydroxy benzene isomers. Methods The modified working electrode was characterized by electrochemical and field emission scanning electron microscopy methods. The modified electrode showed excellent electrocatalytic activity for the electrooxidation of catechol (CC) and hydroquinone (HQ) at physiological pH of 7.4 by cyclic voltammetric (CV) and differential pulse voltammetric (DPV) techniques. Results The effective split in the overlapped oxidation signal of CC and HQ was achieved in a binary mixture with peak to peak separation of 0.102 V and 0.103 V by CV and DPV techniques. The electrode kinetics was found to be adsorption-controlled. The oxidation potential directly depends on the pH of the buffer solution, and it witnessed the transfer of equal number of protons and electrons in the redox phenomenon. Conclusions The limit of detection (LOD) for CC and HQ was calculated to be 0.126 μM and 0.132 μM in the linear range of 0 to 80.0 μM and 0 to 110.0 μM, respectively, by ultra-sensitive DPV technique. The practical applicability of the proposed sensor was evaluated for tap water sample analysis, and good recovery rates were observed. Graphical abstract Electrocatalytic interaction of ALR/GCE with dihydroxy benzene isomers.


2019 ◽  
Vol 9 (2) ◽  
pp. 113-123 ◽  
Author(s):  
Sayed Zia Mohammadi ◽  
Hadi Beitollahi ◽  
Tahereh Rohani ◽  
Hossein Allahabadi

Electrochemical characteristics of carvacrol were investigated on a screen-printed electrode (SPE) modified with La2O3/Co3O4 nanocomposite by using voltammetric techniques, which displayed a well-defined peak for sensitive carvacrol determination in phosphate buffer solution (PBS) at pH 7.0. La2O3/Co3O4 nanoparticles demonstrated suitable catalytic activity for carvacrol determination by differential pulse voltammetry (DPV) technique. Besides, determination of carvacrol in a real samples was recognized in the light of electrochemical findings and a validated voltammetric technique for quantitative analysis of carvacrol in a real formulation was proposed. The DPV peak currents were found to be linear in the concentration range of 10.0 to 800.0 μM. The limit of detection (LOD) was found to be 1.0 μM.


2019 ◽  
Vol 14 (4) ◽  
pp. 216-223 ◽  
Author(s):  
Girish Tigari ◽  
J.G. Manjunatha ◽  
D.K. Ravishankar ◽  
G. Siddaraju

An electrogenerated Polyarginine modified carbon paste electrode (PAMCPE) was fabricated through a simple electropolymerization procedure. The devised electrode was characterized by cyclic voltammetry (CV) and Field Emission Scanning Electron Microscopy (FESEM). This electrode was utilized for electrocatalytic estimation of Riboflavin (RF) and its instantaneous resolution with ascorbic acid (AA) and folic acid (FA) in phosphate buffer solution (PBS) of pH 6.0 by differential pulse voltammetry (DPV). It was observed to be a very responsive electrode for the electrochemical detection and quantification of RF. It was revealed that PAMCPE generates higher current response towards RF contrast to the bare carbon paste electrode (BCPE). Under optimized condition, the RF oxidation current values were linearly reliant on the RF concentration increment with a limit of detection (LOD) of 9.3·10-8 M using DPV. The stable PAMCPE was effectively applied for estimation of RF in B-complex pill and complex human blood serum samples.


2020 ◽  
Vol 18 (4) ◽  
pp. 253-258
Author(s):  
Gamze Erdoğdu

A sensitive and simple modified sensor was prepared by electrodeposition of diphenylamine sulfonic acid (DPSA) to the glassy carbon electrode surface by cyclic voltammetry (CV) technique. The electrooxidation of epinephrine (EP) was accomplished by CV and differential pulse voltammetry at poly(DPSA) modified sensor. As a result of the findings, the current values were enhanced and both substances were separated at the modified sensor compared to the bare electrode. There was linearly between the oxidation current and concentration of EP from 0.2 to 100 μM in phosphate buffer solution at pH 7.0. The limit of detection was 5.0 nM and the sensitivity was 0.4205 μA/μM. The determination of EP was successfully and satisfactorily carried out in real samples such as human blood serum and urine at the poly(DPSA) sensor. To the best knowledge of this work, this is the first study that detect the EP in the presence of ascorbic acid at poly(DPSA) sensor in the literature.


2017 ◽  
Vol 82 (7-8) ◽  
pp. 879-890 ◽  
Author(s):  
Robert Piech ◽  
Joanna Smajdor ◽  
Beata Paczosa-Bator ◽  
Martyna Rumin

Application of cyclic renewable amalgam silver-based electrode (Hg(Ag)FE) for sensitive metronidazole detection by the differential pulse voltammetry (DPV) is described. The unique properties of the Hg(Ag)FE such as the relative large surface area and its fast and very simple renewal were fully utilized for sensitive measurements. Compared with the classical hanging mercury drop electrode (HMDE), the renewable Hg(Ag)FE significantly increases the reduction peak current of metronidazole because of its large surface area. The effects of various factors for the metronidazole determination such as: pulse height and width, step potential, surface area of the working electrode, and basic electrolyte composition are optimized. The obtained calibration graph is linear from 0.1 (17 ?g L-1) to 2 ?M (342 ?g L-1) with correlation coefficient 0.999. For the Hg(Ag)FE with the surface area of 10.1 mm2 the limit of detection (LOD) is 20 nM (3.4 ?g L-1). The repeatability of the method at a concentration of the analyte of 0.5 ?M (5.6 ?g L?1), expressed as relative standard deviation (RSD) is 2.1 % (n = 7). The proposed method was successfully applied and confirmed by studying recovery of metronidazole from spiked samples.


2020 ◽  
Vol 32 (6) ◽  
pp. 1314-1320
Author(s):  
Lamya A. Sarsam ◽  
Salim A. Mohammed ◽  
Sahar A. Fathe

A rapid, simple and sensitive spectrophotometric and RP-HPLC methods have been developed for the quantitative determination of cefotaxime-Na in both pure and dosage forms. The spectrophotometric method was based on diazotization of cefotaxime-Na and then coupling with 8-hydroxyquinoline in an alkaline medium. The resulting azo dye exhibited maximum absorption at 551 nm with a molar absorptivity of 0.597 × 104 L mol-1 cm-1. Beer′s law was obeyed over the range 10-700 μg/25 mL (i.e. 0.4-28.0 ppm) with an excellent determination coefficient (R2 = 0.9993). The limit of detection (LOD) and limit of quantification (LOQ) were found to be 0.0194 and 0.3765 μg mL-1, respectively. The recoveries were obtained in the range 97.3-102.5% and the relative standard deviation (RSD) was better than ± 1.56. The HPLC method has been developed for the determination of cefotaxime-Na. The analysis were carried out on a C18 column and a mobile phase composed of acetonitrile and phosphate buffer solution (0.024M KH2PO4 and 0.01M H3PO4) at pH 3.5 in the ratio of 60:40 (v:v), with a flow rate of 1.0 mL min-1 and UV detection at 258 nm. The proposed method showed good linearity (in a range of concentration 1.0-200 μg mL-1. The recovery percent and a relative standard deviations were found in the range 96 to 104.8% and ± 0.017 to ± 0.031%, respectively. Both methods were applied successfully to the assay of cefotaxime-Na in commercial injection preparations.


2019 ◽  
Author(s):  
Chem Int

In this study voltammetric behaviour of secnidazole (SCZ) at 1, 4-Benzoquinone Modified Carbon Paste Electrode (1,4-BQMCPE) was investigated in Britton Robinson buffer solution using cyclic voltammetric technique. A well-defined cathodic peak was observed for the SCZ in the entire pH range. The current increases steadily with scan rate and the results indicated that the process is irreversible reduction and adsorption controlled. The number of electrons transferred and different kinetic parameters like transfer coefficient and rate constant were calculated by using cyclic voltammetry technique. Differential pulse voltammetric method has been used for the determination of SCZ content in pharmaceutical tablet. This method enabled to determine SCZ in the concentration range 1.0 × 10-8 to 4.0 × 10-4 M. The limit of detection (LOD) and limit of quantification (LOQ) were found to be 2.13 × 10-9 and 2.85 × 10-9 respectively. The method was applied to determine the content of SCZ in different sample solutions of SCZ tablet with excellent recovery and relative standard deviation results (99.892±1.53 respectively) for spiked standard SCZ in tablet sample solutions. The selectivity of the method for SCZ was further studied in the presence of selected potential interferents such as fluconazole, azithromycin etc and confirmed the potential applicability of the developed method for the determination of SCZ in real pharmaceutical tablets.


2020 ◽  
Vol 18 (10) ◽  
pp. 739-744
Author(s):  
Gamze Erdogdu

A sensitive and simple modified sensor was prepared by electrodeposition of diphenylamine sulfonic acid (DPSA) to the glassy carbon electrode surface by cyclic voltammetry (CV) technique. The electrooxidation of Acetaminophen (AC) was accomplished by CV and differential pulse voltammetry at poly(DPSA) modified sensor. As a result of the findings, the current values were enhanced and both substances were separated at the modified sensor compared to the bare electrode. There was linearly between the oxidation current and concentration of AC from 0.0 to 100 μM in phospate buffer solution at pH 7.0. The limit of detection was 3.0 nM and the sensitivity was 0.4108 μA/μM. The determination of AC was successfully and satisfactorily carried out in real samples such as human blood serum and urine at the poly(DPSA) sensor. To the best knowledge of this work, this is the first study that detect the AC in the presence of ascorbic acid at poly(DPSA) sensor in the literature.


2010 ◽  
Vol 64 (4) ◽  
Author(s):  
Adem Asan ◽  
Muberra Andac ◽  
Ibrahim Isildak

AbstractA simple and fast flow injection fluorescence quenching method for the determination of iron in water has been developed. Fluorimetric determination is based on the measurement of the quenching effect of iron on salicylic acid fluorescence. An emission peak of salicylic acid in aqueous solution occurs at 409 nm with excitation at 299 nm. The carrier solution used was 2 × 10−6 mol L−1 salicylic acid in 0.1 mol L−1 NH4+/NH3 buffer solution at pH 8.5. Linear calibration was obtained for 5–100 μg L−1 iron(III) and the relative standard deviation was 1.25 % (n = 5) for a 20 μL injection volume iron(III). The limit of detection was 0.3 μg L−1 and the sampling rate was 60 h−1. The effect of interferences from various metals and anions commonly present in water was also studied. The method was successfully applied to the determination of low levels of iron in real samples (river, sea, and spring waters).


Sign in / Sign up

Export Citation Format

Share Document