scholarly journals Development of a Tri-Functional Nanoprobe for Background-Free SERS Detection of Sialic Acid on the Cell Surface

Chemosensors ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 92
Author(s):  
Septila Renata ◽  
Nitish Verma ◽  
Zhijay Tu ◽  
Rong-Long Pan ◽  
Mario Hofmann ◽  
...  

Sialic acid (SA) on the surface of cells is indispensable in numerous physiological and pathological processes, and sensitive and reproducible detection of SA is crucial for diagnosis and therapy in many diseases. Here, we developed a tri-functional nanoprobe as a sensitive and straightforward surface-enhanced Raman spectroscopy (SERS) nanoprobe for sialoglycan detection on cell surfaces. The reporter was designed to provide three key functionalities that make it ideal for SA detection. First, we employed two recognition groups, phenylboronic acid and an ammonium group, that enhance SA recognition and capture efficiency. Second, we used cyano as the Raman reporter because it emits in the cellular Raman silent region. Finally, thiol acted as an anchoring agent to conjugate the reporter to silver nanocubes to provide SERS enhancement. Our molecular nanoprobe design demonstrated the ability to detect SA on the cell surface with high sensitivity and spatial resolution, opening up new routes to cellular diagnostics.

Nanomaterials ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 730 ◽  
Author(s):  
Min Jia ◽  
Shenmiao Li ◽  
Liguo Zang ◽  
Xiaonan Lu ◽  
Hongyan Zhang

Analyzing biomolecules is essential for disease diagnostics, food safety inspection, environmental monitoring and pharmaceutical development. Surface-enhanced Raman spectroscopy (SERS) is a powerful tool for detecting biomolecules due to its high sensitivity, rapidness and specificity in identifying molecular structures. This review focuses on the SERS analysis of biomolecules originated from humans, animals, plants and microorganisms, combined with nanomaterials as SERS substrates and nanotags. Recent advances in SERS detection of target molecules were summarized with different detection strategies including label-free and label-mediated types. This comprehensive and critical summary of SERS analysis of biomolecules might help researchers from different scientific backgrounds spark new ideas and proposals.


2021 ◽  
pp. 000370282110329
Author(s):  
Ling Wang ◽  
Mario O. Vendrell-Dones ◽  
Chiara Deriu ◽  
Sevde Doğruer ◽  
Peter de B. Harrington ◽  
...  

Recently there has been upsurge in reports that illicit seizures of cocaine and heroin have been adulterated with fentanyl. Surface-enhanced Raman spectroscopy (SERS) provides a useful alternative to current screening procedures that permits detection of trace levels of fentanyl in mixtures. Samples are solubilized and allowed to interact with aggregated colloidal nanostars to produce a rapid and sensitive assay. In this study, we present the quantitative determination of fentanyl in heroin and cocaine using SERS, using a point-and-shoot handheld Raman system. Our protocol is optimized to detect pure fentanyl down to 0.20 ± 0.06 ng/mL and can also distinguish pure cocaine and heroin at ng/mL levels. Multiplex analysis of mixtures is enabled by combining SERS detection with principal component analysis and super partial least squares regression discriminate analysis (SPLS-DA), which allow for the determination of fentanyl as low as 0.05% in simulated seized heroin and 0.10% in simulated seized cocaine samples.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2508
Author(s):  
Osama Nasr ◽  
Jian-Ru Jiang ◽  
Wen-Shuo Chuang ◽  
Sheng-Wei Lee ◽  
Chih-Yen Chen

In this article, we demonstrate a facile, rapid, and practical approach to growing high-quality Cu2S nanosheets decorated with Ag nanoparticles (NPs) through the galvanic reduction method. The Ag/Cu2S nanosheets were efficiently applied to the surface-enhanced Raman scattering (SERS) and photocatalytic degradation applications. The photodegradation of RhB dye with the Ag/Cu2S nanosheets composites occurred at a rate of 2.9 times faster than that observed with the undecorated Cu2S nanosheets. Furthermore, the Ag/Cu2S nanosheets displayed highly sensitive SERS detection of organic pollutant (R6G) as low as 10−9 M. The reproducibility experiments indicated that the Ag/Cu2S nanosheets composites could be used for dual functionality in a new generation of outstandingly sensitive SERS probes for detection and stable photocatalysts.


RSC Advances ◽  
2017 ◽  
Vol 7 (38) ◽  
pp. 23866-23874 ◽  
Author(s):  
Lei Sun ◽  
Min Zhang ◽  
Vinothkumar Natarajan ◽  
Xiaofei Yu ◽  
Xiaoli Zhang ◽  
...  

Structural representation of the SPME-SERS fiber with an internal reference and the SERS detection.


The Analyst ◽  
2012 ◽  
Vol 137 (18) ◽  
pp. 4280 ◽  
Author(s):  
Kate E. Stephen ◽  
Darren Homrighausen ◽  
Glen DePalma ◽  
Cindy H. Nakatsu ◽  
Joseph Irudayaraj

The Analyst ◽  
2015 ◽  
Vol 140 (13) ◽  
pp. 4668-4675 ◽  
Author(s):  
Cuicui Liu ◽  
Xiaoli Zhang ◽  
Limei Li ◽  
Jingcheng Cui ◽  
Yu-e Shi ◽  
...  

Silver–copper fibers loaded with silver nanoparticles are used for SPME–SERS detection of polycyclic aromatic hydrocarbons, which can be further confirmed by GC-MS.


The Analyst ◽  
2018 ◽  
Vol 143 (10) ◽  
pp. 2363-2368 ◽  
Author(s):  
Yiping Wu ◽  
Wenfang Yu ◽  
Benhong Yang ◽  
Pan Li

CTAB-functionalized Au NP film as SERS active substrate prepared by the evaporation-driven self-assembly strategy demonstrated high sensitivity and reproducibility for the detection of different food additives.


Toxins ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 49
Author(s):  
Yan Liu ◽  
Lijuan He ◽  
Yunli Zhao ◽  
Yongbing Cao ◽  
Zhiguo Yu ◽  
...  

This study aimed to optimize the detection conditions for surface-enhanced Raman spectroscopy (SERS) of single-stranded DNA (ssDNA) in four different buffers and explore the interaction between gonyautoxin (GTX1/4) and its aptamer, GO18. The influence of the silver colloid solution and MgSO4 concentration (0.01 M) added under four different buffered conditions on DNA SERS detection was studied to determine the optimum detection conditions. We explored the interaction between GTX1/4 and GO18 under the same conditions as those in the systematic evolution of ligands by exponential enrichment technique, using Tris-HCl as the buffer. The characteristic peaks of GO18 and its G-quadruplex were detected in four different buffer solutions. The change in peak intensity at 1656 cm−1 confirmed that the binding site between GTX1/4 and GO18 was in the G-quadruplex plane. The relative intensity of the peak at 1656 cm−1 was selected for the GTX1/4–GO18 complex (I1656/I1099) to plot the ratio of GTX1/4 in the Tris-HCl buffer condition (including 30 μL of silver colloid solution and 2 μL of MgSO4), and a linear relationship was obtained as follows: Y = 0.1867X + 1.2205 (R2 = 0.9239). This study provides a basis for subsequent application of SERS in the detection of ssDNA, as well as the binding of small toxins and aptamers.


Sign in / Sign up

Export Citation Format

Share Document