scholarly journals CgMFS1, a Major Facilitator Superfamily Transporter, Is Required for Sugar Transport, Oxidative Stress Resistance, and Pathogenicity of Colletotrichum gloeosporioides from Hevea brasiliensis

2021 ◽  
Vol 43 (3) ◽  
pp. 1548-1557
Author(s):  
Na Liu ◽  
Qiannan Wang ◽  
Chaozu He ◽  
Bang An

Colletotrichum gloeosporioides is the main causal agent of anthracnose in various plant species. Determining the molecular mechanisms underlying the pathogenicity and fungicide resistance of C. gloeosporioides could help build new strategies for disease control. The major facilitator superfamily (MFS) has multiple roles in the transport of a diverse range of substrates. In the present study, an MFS protein CgMFS1 was characterized in C. gloeosporioides. This protein contains seven transmembrane domains, and its predicted 3D structure is highly similar to the reported hexose transporters. To investigate the biological functions of CgMFS1, the gene knock-out mutant ΔCgMFS1 was constructed. A colony growth assay showed that the mutant was remarkably decreased in vegetative growth in minimal medium supplemented with monosaccharides and oligosaccharides as the sole carbon sources, whereas it showed a similar growth rate and colony morphology as wild types when using soluble starch as the carbon source. A stress assay revealed that CgMFS1 is involved in oxidative stress but not in the fungicide resistance of C. gloeosporioides. Furthermore, its pathogenicity was significantly impaired in the mutant, although its appressorium formation was not affected. Our results demonstrate that CgMFS1 is required for sugar transport, resistance to oxidative stress, and the pathogenicity of Colletotrichum gloeosporioides from Hevea brasiliensis.

Antioxidants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 442
Author(s):  
Inés Reverón ◽  
Laura Plaza-Vinuesa ◽  
Laura Santamaría ◽  
Juan Carlos Oliveros ◽  
Blanca de las Rivas ◽  
...  

This study was aimed to gain new insights into the molecular mechanisms used by Lactobacillus plantarum WCFS1 to respond to hydroxytyrosol (HXT), one of the main and health-relevant plant phenolics present in olive oil. To this goal, whole genome transcriptomic profiling was used to better understand the contribution of differential gene expression in the adaptation to HXT by this microorganism. The transcriptomic profile reveals an HXT-triggered antioxidant response involving genes from the ROS (reactive oxygen species) resistome of L. plantarum, genes coding for H2S-producing enzymes and genes involved in the response to thiol-specific oxidative stress. The expression of a set of genes involved in cell wall biogenesis was also upregulated, indicating that this subcellular compartment was a target of HXT. The expression of several MFS (major facilitator superfamily) efflux systems and ABC-transporters was differentially affected by HXT, probably to control its transport across the membrane. L. plantarum transcriptionally reprogrammed nitrogen metabolism and involved the stringent response (SR) to adapt to HXT, as indicated by the reduced expression of genes involved in cell proliferation or related to the metabolism of (p)ppGpp, the molecule that triggers the SR. Our data have identified, at genome scale, the antimicrobial mechanisms of HXT action as well as molecular mechanisms that potentially enable L. plantarum to cope with the effects of this phenolic compound.


2021 ◽  
Author(s):  
Can Zhao ◽  
Yuting Li ◽  
Zhijian Liang ◽  
Lihong Gao ◽  
Chenggui Han ◽  
...  

Thifluzamide, a succinate dehydrogenase (SDH) inhibitor, possesses high activity against Rhizoctonia. In this study, 144 R. solani AG-4 (4HGI, 4HGII, and 4HGIII) isolates, the predominate pathogen associated with sugar beet seedling damping-off, were demonstrated to be sensitive to thifluzamide with a calculated mean median effective concentration of 0.0682 ± 0.0025 μg/mL. Thifluzamide-resistant isolates were generated using fungicide-amended media, resulting in four AG-4HGI isolates and eight AG-4HGII isolates with stable resistance and almost no loss in fitness. Evaluation of cross-resistance of the twelve thifluzamide-resistant isolates and their corresponding parental-sensitive isolates revealed a moderately positive correlation between thifluzamide resistance and the level of resistance to eight other fungicides from three groups, the exception being fludioxonil. An active efflux of fungicide through ATP-binding cassette and major facilitator superfamily transporters was found to be correlated to the resistance of R. solani AG-4HGII isolates to thifluzamide based on RNA-sequencing and quantitative reverse transcription-PCR analyses. Sequence analysis of sdhA, sdhB, sdhC, and sdhD revealed replacement of isoleucine by phenylalanine at position 61 in SDHC in nine of the twelve generated thifluzamide-resistant isolates. No other mutations were found in any of the other genes. Collectively, the data indicate that the active efflux of fungicide and a point mutation in sdhC may contribute to the resistance of R. solani AG-4HGI and AG-4HGII isolates to thifluzamide in vitro. This is the first characterization of the potential molecular mechanism associated with the resistance of R. solani AG-4 isolates to thifluzamide, and provides practical guidance for the use of this fungicide.


2004 ◽  
Vol 379 (2) ◽  
pp. 375-383 ◽  
Author(s):  
Patricia A. vanKUYK ◽  
Jasper A. DIDERICH ◽  
Andrew P. MacCABE ◽  
Oscar HERERRO ◽  
George J. G. RUIJTER ◽  
...  

A sugar-transporter-encoding gene, mstA, which is a member of the major facilitator superfamily, has been cloned from a genomic DNA library of the filamentous fungus Aspergillus niger. To enable the functional characterization of MSTA, a full-length cDNA was expressed in a Saccharomyces cerevisiae strain deficient in hexose uptake. Uptake experiments using 14C-labelled monosaccharides demonstrated that although able to transport d-fructose (Km, 4.5±1.0 mM), d-xylose (Km, 0.3±0.1 mM) and d-mannose (Km, 60±20 µM), MSTA has a preference for d-glucose (Km, 25±10 µM). pH changes associated with sugar transport indicate that MSTA catalyses monosaccharide/H+ symport. Expression of mstA in response to carbon starvation and upon transfer to poor carbon sources is consistent with a role for MSTA as a high-affinity transporter for d-glucose, d-mannose and d-xylose. Northern analysis has shown that mstA is subject to CreA-mediated carbon catabolite repression and pH regulation mediated by PacC. A. niger strains in which the mstA gene had been disrupted are phenotypically identical with isogenic reference strains when grown on 0.1–60 mM d-glucose, d-mannose, d-fructose or d-xylose. This indicates that A. niger possesses other transporters capable of compensating for the absence of MSTA.


2019 ◽  
Vol 5 (4) ◽  
pp. 100 ◽  
Author(s):  
Marta de Ramón-Carbonell ◽  
Mario López-Pérez ◽  
Luis González-Candelas ◽  
Paloma Sánchez-Torres

A new Penicillium digitatum major facilitator superfamily (MFS) transporter (PdMFS1) was identified and functionally characterized in order to shed more light on the mechanisms underlying fungicide resistance. PdMFS1 can play an important role in the intensification of resistance to fungicides normally used in P. digitatum postharvest treatments. In the PdMFS1 disrupted mutants, a slight effect in response to chemical fungicides was observed, but fungicide sensitivity was highly affected in the overexpression mutants which became resistant to wide range of chemical fungicides. Moreover, P. digitatum knock-out mutants exhibited a lower rate of fungal virulence when infected oranges were stored at 20 °C. Disease symptoms were higher in the PdMFS1 overexpression mutants coming from the low-virulent P. digitatum parental strain. In addition, the gene expression analysis showed an induction of PdMFS1 transcription in all overexpression mutants regardless from which progenitor came from, and four-time intensification of the parental wild type strain during citrus infection reinforcing PdMFS1 role in fungal virulence. The P. digitatum MFS transporter PdMFS1 contributes not only to the acquisition of wide range of fungicide resistance but also in fungal virulence during citrus infection.


1998 ◽  
Vol 18 (9) ◽  
pp. 5239-5246 ◽  
Author(s):  
Krassen Dimitrov ◽  
Shelley Sazer

ABSTRACT Most microorganisms live in conditions of nutrient limitation in their natural habitats. When exposed to these conditions they respond with physiological and morphological changes that enable them to survive. To obtain insights into the molecular mechanisms of this response a systematic genetic screen was performed to identify genes that when overexpressed can induce a starvation-like response in the yeast species Schizosaccharomyces pombe. One gene that meets these criteria, fnx1 +, induces, transcriptionally correlates with, and is required for the entry into the quiescent G0 state that is normally induced by nitrogen starvation. fnx1 + encodes a protein with sequence similarity to the proton-driven plasma membrane transporters from the multidrug resistance group of the major facilitator superfamily of proteins. We propose that fnx1 +plays a role in the entry into G0, possibly by facilitating the release of a signaling substance into the environment as a means of cell-to-cell communication.


2014 ◽  
Vol 59 (2) ◽  
pp. 1236-1245 ◽  
Author(s):  
Vijaya Bharathi Srinivasan ◽  
Vasanth Vaidyanathan ◽  
Govindan Rajamohan

ABSTRACTAlthoughAcinetobacter baumanniiis well accepted as a nosocomial pathogen, only a few of the outer membrane proteins (OMPs) have been functionally characterized. In this study, we demonstrate the biological functions of AbuO, a homolog of TolC fromEscherichia coli. Inactivation ofabuOled to increased sensitivity to high osmolarity and oxidative stress challenge. The ΔabuOmutant displayed increased susceptibility to antibiotics, such as amikacin, carbenicillin, ceftriaxone, meropenem, streptomycin, and tigecycline, and hospital-based disinfectants, such as benzalkonium chloride and chlorhexidine. The reverse transcription (RT)-PCR analysis indicated increased expression of efflux pumps (resistance nodulation cell division [RND] efflux pumpacrD, 8-fold; SMR-typeemrEhomolog, 12-fold; and major facilitator superfamily [MFS]-typeampGhomolog, 2.7-fold) and two-component response regulators (baeR, 4.67-fold;ompR, 10.43-fold) in the ΔabuOmutant together with downregulation ofrstA(4.22-fold) and the pilin chaperone (9-fold). The isogenic mutant displayed lower virulence in a nematode model (P< 0.01). Experimental evidence for the binding of MerR-type transcriptional regulator SoxR to radiolabeledabuOpromoter suggests regulation ofabuOby SoxR inA. baumannii.


2007 ◽  
Vol 73 (15) ◽  
pp. 4874-4880 ◽  
Author(s):  
Manda Yu ◽  
Yun-Wing Faan ◽  
Wilson Y. K. Chung ◽  
Jimmy S. H. Tsang

ABSTRACT Burkholderia cepacia MBA4 is a bacterium that can utilize 2-haloacids as carbon and energy sources for growth. It has been proposed that dehalogenase-associated permease mediates the uptake of haloacid. In this paper, we report the first cloning and characterization of such a haloacid permease. The structural gene, designated deh4p, was found 353 bases downstream of the dehalogenase gene deh4a. Quantitative analysis of the expression of deh4p showed that it was induced by monochloroacetate (MCA), to a level similar to the MCA-induced level of deh4a. The nucleotide sequence of deh4p was determined, and an open reading frame of 1,656 bp encoding a putative peptide of 552 amino acids was identified. Deh4p has a putative molecular weight of 59,414 and an isoelectric point of 9.88. Deh4p has the signatures of sugar transport proteins and integral membrane proteins of the major facilitator superfamily. Uptake of [14C]MCA into the cell was Deh4p dependent. Deh4p has apparent Km s of 5.5 and 8.9 μM and V maxs of 9.1 and 23.1 nmol mg−1 min−1 for acetate and MCA, respectively. A mutant with a transposon-inactivated haloacid operon failed to grow on MCA even when deh4a was provided in trans.


2014 ◽  
Vol 5 (1) ◽  
Author(s):  
Goragot Wisedchaisri ◽  
Min-Sun Park ◽  
Matthew G. Iadanza ◽  
Hongjin Zheng ◽  
Tamir Gonen

Sign in / Sign up

Export Citation Format

Share Document